Effects of Different Dietary Mineral Contents on the Survival and Growth Rate of Black Apple Snails (Pila polita) in the Juvenile Stage

Date Received: Feb 25, 2025

Date Accepted: Jun 10, 2025

Date Published: Jun 28, 2025

Views

5

Download

4

Section:

ANIMAL SCIENCE – VETERINARY MEDICINE – AQUACULTURE

How to Cite:

Binh, L., Thao, N., & Khoa, T. N. (2025). Effects of Different Dietary Mineral Contents on the Survival and Growth Rate of Black Apple Snails (Pila polita) in the Juvenile Stage. Vietnam Journal of Agricultural Sciences, 8(2), 2464–2473. https://doi.org/10.31817/vjas.2025.8.2.

Effects of Different Dietary Mineral Contents on the Survival and Growth Rate of Black Apple Snails (Pila polita) in the Juvenile Stage

Le Van Binh (*) 1 , Ngo Thi Thu Thao 1   , Tran Nguyen Duy Khoa 1

  • Corresponding author: [email protected]
  • 1 College of Aquaculture and Fisheries, Can Tho University, Can Tho 94115, Vietnam
  • Keywords

    Black apple snail, growth, mineral supplementation, survival rate

    Abstract


    The purpose of this study was to determine the effects of different dietary mineral contents on the growth, survival rate, and biomass increase of the black apple snail, Pila polita, during the nursing phase. Juveniles (0.26 g snail-1) were fed diets with five different mineral supplementation levels: (1) Control (No.Mi); (2) Mineral supplement 3% (Mi3); (3) Mineral supplement 5% (Mi5); (4) Mineral supplement 7% (Mi7); and (5) Mineral supplement 9% (Mi9), with three replicates per treatment. Snails were reared in composite tanks with a density of 300 ind m-2 for 56 days. After 56 days, the snail survival rate in Mi7 (98.4%) was higher (P <0.05) than in No.Mi (95.8%). Snails in Mi7 also obtained the highest height, weight, and yield (23.16mm, 2.58g, and 742 g m-2), which were significantly different from the other treatments (P <0.05). The results also showed that the dietary mineral concentration of 7% generated an acceptable mineral ratio, which could increase snail rearing efficiency.

    References

    Ademolu K. O., Idowum A. B., Mafiana C. F. & Osinowom O. A. (2004). Performance. proximate and mineral analyses of African giant land snail (Archechatina marginata) fed different nitrogen sources. African Journal of Biotechnology. 3: 412-417.

    Badmos A. A., Sola-Ojo F. E., Oke S. A., Amusa T. O., Amali H. E. & Lawal A. O. (2016). Effect of different sources of dietary calcium on the carcass and sensory qualities of giant african land snails (Archachatina marginata). Nigerian Journal of Agriculture. Food and Environment. 12(2): 181-184.

    Beeby A. & Richmond L. (2007). Differential growth rates and calcium-allocation strategies in the garden snail Cantareus aspersus. The Journal of Molluscan Studies. 73(1): 105-112.

    Beeby A. & Richmond L. (2011). Magnesium and the Deposition of Lead in the Shell of Three Populations of the Garden Snail Cantareus aspersus. Environmental Pollution. 159(6): 1667-1672. DOI: 10.1016/j.envpol.2011.02.040.

    Chaitanawisuti N., Sungsirin T. & Piyatiratitivorakul S. (2010). Effects of dietary calcium and phosphorus supplementation on the growth performance of juvenile spotted babylon Babylonia areolata culture in a recirculating culture system. Aquaculture International. 18(3): 303-313.

    Chandra A. K., Sengupta P., Goswami H. & Sarkar M. (2013). Effects of Dietary Magnesium on Testicular Histology. Steroidogenesis. Spermatogenesis and Oxidative Stress Markers in Adult Rats. Indian Journal of Experimental Biology. 51(1): 37-47.

    Coote T. A., Hone P.W., Kenyon R. & Maguire G.B. (1996). The effect of different combinations of dietary calcium and phosphorus on the growth of juvenile Haliotis laevigata. Aquaculture. 145(1-4): 267-279.

    Coote T. A., Hone P. W., Van Barneveld R. J., & Maguire G. B. (2000). Optimum protein level in a semi-purified diet for juvenile greenlip abalone Haliotis laevigata. Aquaculture Nutrition. 6: 213-220.

    Cowie R. H., Hayes K. A. & Strong E. E. (2015). The recent apple snails of africa and Asia: a nomenclatural and type catalogue. The apple snails of the Americas: addenda and corrigenda. Zootaxa 3940. 1: 1-92.

    Dalesman S. & Lukowiak K. (2013). Effect of acute exposure to low environmental calcium on respiration and locomotion in Lymnaea stagnalis. The Journal of Experimental Biology. 213: 1471-1476.

    Đang Ngoc Thanh, Ho Thanh Hai and Duong Ngoc Cuong (2003). Species composition of Ampullariidae (Pilidae) in Vietnam. Journal of Biology. 25(4): 1-5 (in Vietnamese).

    Garcia A., Perea J. M., Mayoral A., Acero R., Martos J., Gomez G. & Pena F. (2006). Laboratory rearing conditions for improved growth of juvenile Helix aspersa Müller snails. Laboratory Animals. 40(3): 309-316.

    Glass N. H. & Darby P. C. (2009). The effect of calcium and pH on Florida apple snail. Pomacea paludosa. shell growth and crush weight. Aquatic Ecology. 43: 1085-1093.

    Gómez-Montes L., García-Esquivel Z., D'Abramo L. R., Shimada A., Vásquez-Peláez C., & Vinna M. T. (2003). Effect of dietary protein: energy ratio on intake, growth and metabolism of juvenile green abalone Haliotis fulgens. Aquaculture. 220(1-4): 769-780. DOI: 10.1016/S0044-8486(02)00533-1.

    Gouveia A. R., Pearce-Kelly P., Quicke D. L. J. & Leather, S. R. (2011). Effects of different calcium concentrations supplemented on the diet of Partula gibba on their morphometric growth parameters, Weight and Reproduction Success. Malacologia. 54(1-2): 139-146. DOI:10.4002/040.054.0105.

    Hunter R. D. & Lull W. W. (1977). Physiologic and environmental factors influencing the calcium-to-tissue ratio in populations of three species of freshwater pulmonate snails. Oecologia. 29: 205-218. DOI:10.1007/BF00345695.

    Huskinson E. Maggini S. & Ruf M. (2007). The Roles of Vitamins and Mineral in Energy Metabolism and Well-being. The Journal of international medical research. 35(3): 277-289.

    Ireland M. P. & Marigomez I. (1992). The influence of dietary calcium on the tissue distribution of Cu. Zn. Mg and P and histological changes in the digestive gland cells in the snail Achatina fulica. Journal of Molluscan Studies. 58: 157-168.

    Ireland M. P. (1991). The effect of dietary calcium on growth. shell thickness and tissue calcium distribution in the snail Achatina fulica. Comparative Biochemistry and Physiology Part A: Physiology. 98(1): 111-116.

    Jatto O. E., Asia I. O. & Medjor W. E. (2010). Proximate and Mineral Composition of Different Species of Snail Shell. Pacific Journal of Science and Technology. 11: 416-419.

    Karamoko M., Sika Piba N. A., Ouattara S., Otchoumou A. & Kouassi K. P. (2014). Effets du calcium alimentaire sur les paramètres de reproduction de l’escargot Limicolaria flammea, en élevage hors-sol. Afrique Science. 10(4): 245-256.

    Karmanska A., Stanczak A. & Karwowski B. (2015). Magnez Aktualny Stan Wiedzy. Bromatologia Chemia Toksykologiczna. 4: 677-689.

    Kritsanapuntu S., Chaitanawisuti N., Santhaweesuk W. & Natsukari Y. (2006). Combined effects of water exchange regimes and calcium carbonate additions on growth and survival of hatchery-reared juvenile spotted Babylon (Babylonia areolata) in recirculating grow-out system. Aquaculture Research. 37(7): 664-670.

    Le Van Binh & Ngo Thi Thu Thao (2020). variation of proximate compositions in tissues of Black apple snail (Pila polita). Huaf Journal of Agricultural Science and Technology. 4(1): 1755-1765 (in Vietnamese).

    Le Van Binh & Ngo Thi Thu Thao (2019). The abundance (CPUEn. w) of black apple snails (Pila polita) in some provinces of the Mekong Delta. Can Tho University Journal of Science. 55(2b): 38-50 (in Vietnamese).

    Lee S., Jeon M. J. & Kim D. H. (1999). Effect of Supplemental Vitamin and/or Mineral Premixes in the Formulated Diets on Growth of Juvenile Abalone (Haliotis discus hannai). Korean Journal of Fisheries and Aquatic Sciences. 32(4): 391-394.

    Ngo Thi Thu Thao & Le Van Binh (2017). Effectiveness of calcium supplementation into diet in rearing juvenile snail. Pila polita. Can Tho University Journal of Science 52b: 70-77. DOI: 10.22144/ctu.jvn.2017.126 (in Vietnamese).

    Ngo Thi Thu Thao & Le Van Binh (2018). Effects of pH levels on the results of nursing snail Pila polita. Science & Technology Journal of Agriculture and Rural Development 10: 111-117 (in Vietnamese).

    Oluokun J. A., Omole A. J. & Fapounda O. (2005). Effects of increasing the level of calcium supplementation in the diets of growing snail on performance characteristics. Research Journal of Agriculture and Biological Sciences. 1(1): 76-79.

    Orsar T. J., Danjuma J. & Tyowua B. T. (2020). Growth performance and carcass characteristics of African Giant Land Snail (Archachatina marginata) fed different dietary protein supplements. Nigerian Journal of Animal Science. 22(2): 213-221.

    Pu F., Chen N. & Xue S. (2016). Calcium Intake. Calcium Homeostasis and Health. Food Science and Human Wellness. 5(1): 8-16.

    Pusadee S., Piyarat B., Jaremate L., Yupa K., Manus K. & Songtham K. (2005). freshwater mollusks of medical importance in Kalasin province, northeast Thailand. 36(3): 653-657.

    Rygało-Galewska A., Zgli´nska K., Roguski M., Roman K., Bendowski W., Bie'n D. & Niemiec T. (2023). Effect of Different Levels of Calcium and Addition of Magnesium in the Diet on Garden Snails’ (Cornu aspersum) Condition. Production. and Nutritional Parameters. Agriculture. 13: 2055.

    Tan B., Mai K. & Liufu Z. (2001). Response of juvenile abalone. Haliotis discus hannai. to dietary calcium. phosphorus and calcium/phosphorus ratio. Aquaculture. 198(1): 141-158.

    Truong Van Xa & Tran Kim Thoa (2024). A survey on nutrition and genetics of Black apple snail (Pila polita) in Vinh Long province. National Scientific Conference on Biotechnology 2024. Institute of Biotechnology, Hue University: 996-1004 (in Vietnamese).

    Yamashita M., Motoki S., Space A. T. F. & Naomi J. K. (2008). Production of apple snail for space diet. The 37th COSPAR Scientific Assembly, July 13-20, 2008, in Montréal, Canada: 3531 .