Isolation and Characterization of Saccharomyces cerevisiae with Antagonistic Activity against Salmonella pullorum

Date Received: Nov 01, 2025

Date Accepted: Dec 30, 2025

Date Published: Dec 31, 2025

Views

32

Download

11

Section:

ANIMAL SCIENCE – VETERINARY MEDICINE – AQUACULTURE

How to Cite:

Lan, N., Hiep, T., Son, H., Thang, N., Hang, N., Huyen, N., … Duc, H. (2025). Isolation and Characterization of Saccharomyces cerevisiae with Antagonistic Activity against Salmonella pullorum. Vietnam Journal of Agricultural Sciences, 8(4), 2756–2763. https://doi.org/10.31817/vjas.2025.8.4.08

Isolation and Characterization of Saccharomyces cerevisiae with Antagonistic Activity against Salmonella pullorum

Nguyen Thi Lan 1 , Tran Hiep 2 , Hoang Minh Son 1 , Nguyen Van Thang 1 , Nguyen Thi Thu Hang 1 , Nguyen Thi Huyen 1 , Truong Long Van 3   , Hoang Minh Duc (*) 1

  • Corresponding author: [email protected]
  • 1 Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 12400, Vietnam
  • 2 Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi 12400, Vietnam
  • 3 Tan Viet Biology Technology Joint Stock Company, Ninh Binh 8100, Vietnam
  • Keywords

    Probiotics, Saccharomyces cerevisiae, Salmonella pullorum, poultry, antibiotic resistance

    Abstract


    Saccharomyces cerevisiae is considered to be an alternative to antibiotics in reducing the growth of pathogenic bacteria and enhancing the mucosal immune system. In countries with developed livestock industries, antibiotic resistance of Salmonella pullorum is still causing difficulties in controlling Pullorum disease. This study aimed to isolate and select S. cerevisiae strains with antagonistic activity against S. pullorum for potential application in probiotics production. A total of eight S. cerevisiae strains were isolated from 50 ripe mango samples. All the isolated strains exhibited inhibitory effects against S. pullorum. Among them, strains SC1, SC6, and SC8 showed strong antagonism, with inhibition zone diameters of 16 ± 0.87mm, 16 ± 0.50mm, and 17 ± 1.80mm, respectively. These isolates exhibited high stability under various conditions. These findings suggest that S. cerevisiae strains SC1, SC6, and SC8 are potential candidates for producing a probiotic to control poultry diseases.

    References

    Ballet N., Renaud S., Roume H., George F., Vandekerckove P., Boyer M. & Durand-Dubief M. (2023). Saccharomyces cerevisiae: multifaceted applications in one health and the achievement of sustainable development goals. Encyclopedia. 3(2): 602-613. DOI: 10.3390/encyclopedia3020043.

    Chavez C. M., Groenewald M., Hulfachor A. B., Kpurubu G., Huerta R., Hittinger C. T. & Rokas A. (2024). The cell morphological diversity of Saccharomycotina yeasts. FEMS Yeast Research. 9(24): foad055. DOI: 10.1093/femsyr/foad055.

    Hou C. Y, Huang P. H., Lai Y. T., Lin S. P., Liou B. K., Lin H. W., Hsieh C. W. & Cheng K. C. (2022). Screening and identification of yeasts from fruits and their coculture for cider production. Fermentation. 8(1): 1. DOI: 10.3390/fermentation8010001.

    Elghandour M. M. Y., Tan Z. L., Abu Hafsa S. H., Adegbeye M. J., Greiner R., Ugbogu E. A., Cedillo Monroy J. & Salem A. Z. M. (2020). Saccharomyces cerevisiae as a probiotic feed additive to non and pseudo-ruminant feeding: a review. Journal of Applied Microbiology. 128(3): 658-674. DOI: 10.1111/jam.14416.

    Eng S. K., Pusparajah, P., Ab Mutalib, N. S., Ser, H. L., Chan, K. G., & Lee, L. H. (2015). Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Frontiers in Life Science. 8(3): 284-293. DOI: 10.1080/21553769.2015.1051243.

    Fakruddin M., Hossain M. N. & Ahmed M. M. (2017). Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. BMC Complementary and Alternative Medicine. 17(1): 64. DOI: 10.1186/s12906-017-1591-9.

    Feye K. M., Carroll J. P., Anderson K. L., Whittaker J. H., Schmidt-McCormack G. R., McIntyre D. R., Pavlidis H. O. & Carlson S. A. (2019). Saccharomyces cerevisiae fermentation products that mitigate foodborne Salmonella in cattle and poultry. Frontiers in Veterinary Science. 6(APR). DOI: 10.3389/fvets.2019.00107.

    Goddard M. R. & Greig D. (2015). Saccharomyces cerevisiae: A nomadic yeast with no niche? FEMS Yeast Research. 15(3): 1-6. DOI: 10.1093/femsyr/fov009.

    Guimarães T. M., Moriel D. G., Machado I. P., Fadel Picheth C. M. T. & Bonfim T. M. B. (2006). Isolation and characterization of Saccharomyces cerevisiae strains of winery interest. Revista Brasileira de Ciências Farmacêuticas. 42: 119-126.

    Gut A. M., Vasiljevic T., Yeager T. & Donkor O. N. (2019). Characterization of yeasts isolated from traditional kefir grains for potential probiotic properties. Journal of Functional Foods. 58: 56-66. DOI: 10.1016/j.jff.2019.04.046.

    Ho T. X. T., Nguyen T. K. C., Le C. T. & Nguyen V. P. (2023). Isolation and identification of yeasts from local fruits in Thua Thien Hue province, Vietnam. Hue University Journal of Science: Natural Science. 132(1D): 43-53. DOI: 10.26459/hueunijns.v132i1d.7100.

    Invernizzi G., Agazzi A., Ferroni M., Rebucci R., Fanelli A., Baldi A., Dell’Orto V. & Savoini G. (2013). Effects of inclusion of selenium-enriched yeast in the diet of laying hens on performance, eggshell quality, and selenium tissue deposition. Italian Journal of Animal Science. 12(e1). DOI: 10.4081/ijas.2013.e1.

    Aon J. C., Tecson R. C. & Loladze V. (2018). Saccharomyces cerevisiae morphological changes and cytokinesis arrest elicited by hypoxia during scale-up for production of therapeutic recombinant proteins. Microbial Cell Factories. 17(1): 195. DOI: 10.1186/s12934-018-1044-2.

    Kurtzman C. P., Fell J. W. & Boekhout T. (2011). The Yeasts: A Taxonomic Study, Volume 1 (ed. 5th). Elsevier, United States of America.

    Latif A. S., Saparbekova A. A., Akhmedova Z. R., Kaldybekova G. & Daugaliyeva S. T. (2023). Probiotic yeast Saccharomyces cerevisiae Az-12 isolated from pomegranate juice presented inhibitory effects against pathogenic bacteria. Brazilian Journal of Biology. 83. DOI: 10.1590/1519-6984.271997.

    Le T. A., Dang T. D. T., Nguyen T. N. Y., Tran T. T. V., Nguyen P. H., Doan T. K. T. & Le V. L. P. (2023). Isolation and identification of yeasts from Maprang (Bouea macrophylla Griffith) in Can Tho and Vinh Long. TNU Journal of Science and Technology. 228(09): 338-345. DOI: 10.34238/tnu-jst.7905.

    Lin C. Y., Carroll M. Q., Miller M. J., Rabot R. & Swanson K. S. (2020). Supplementation of yeast cell wall fraction tends to improve intestinal health in adult dogs undergoing an abrupt diet transition. Frontiers in Veterinary Science. 7. DOI: 10.3389/fvets.2020.597939.

    Lopes C. A. & Sangorrín M. P. (2010). Optimization of killer assays for yeast selection protocols. Revista Argentina de Microbiología. 42(4): 298-306. DOI: 10.1590/S0325-75412010000400011

    Mogmenga I., Somda M. K., Ouattara C. A. T., Keita I., Dabiré Y., Diguță C. F., Toma R. C., Ezeogu L. I., Ugwuanyi J. O., Ouattara A. S. & Matei F. (2023). Promising probiotic properties of the yeasts isolated from rabilé, a traditionally fermented beer produced in Burkina Faso. Microorganisms. 11(3). DOI: 10.3390/microorganisms11030802.

    Moradi R., Nosrati R., Zare H., Tahmasebi T., Saderi H. & Owlia P. (2018). Screening and characterization of in-vitro probiotic criteria of Saccharomyces and Kluyveromyces strains. Iranian Journal of Microbiology. 10(2): 123.

    Parvej M. S., Nazmul Hussain Nazir K. H. M., Bahanur Rahman M., Jahan M., Rahman Khan M. F. & Rahman M. (2016). Prevalence and characterization of multidrug-resistant Salmonella Enterica serovar Gallinarum biovar Pullorum and Gallinarum from chicken. Veterinary World. 9(1): 65-70. DOI: 10.14202/vetworld.2016.65-70.

    Penha Filho R. A. C., Ferreira J. C., Kanashiro A. M. I., Darini A. L. da C. & Berchieri Junior A. (2016). Antimicrobial susceptibility of Salmonella gallinarum and Salmonella pullorum isolated from ill poultry in Brazil. Ciencia Rural. 46(3): 513-518. DOI: 10.1590/0103-8478cr20150398.

    Pham Thi Thu Thao, Nguyen Ngoc Anh Thu, Le Thanh Duy, Nguyen Ngoc Thanh, Bui Hoang Dang Long, & Huynh Xuan Phong (2019). Isolation and selection of yeast for wine fermentation from red dragon fruit (Hylocereus polyrhizus). Vietnam Journal of Science and Technology. 61(B): 54-59 (in Vietnamese).

    Pontier-Bres R., Munro P., Boyer L., Anty R., Imbert V., Terciolo, C., André, F., Rampal, P., Lemichez, E., Peyron, J. F., & Czerucka, D. (2014). Saccharomyces boulardii modifies Salmonella typhimurium traffic and host immune responses along the intestinal tract. PLoS ONE. 9(8). DOI: 10.1371/journal.pone.0103069

    Abid R., Waseem H., Ali J., Ghazanfar S., Ali G. M., Elasbali A. M. & Alharethi S. H. (2022). Probiotic yeast Saccharomyces: back to nature to improve human health. Journal of Fungi. 8(5): 444. DOI: 10.3390/jof8050444.

    Romero-Luna H. E., Hernández-Sánchez H., Ribas-Aparicio R. M., Cauich-Sánchez P. I., & Dávila-Ortiz G. (2019). Evaluation of the probiotic potential of Saccharomyces cerevisiae strain (C41) isolated from tibicos by in vitro studies. Probiotics and Antimicrobial Proteins. 11(3): 794-800. DOI: 10.1007/s12602-018-9471-2.

    Salvadó Z., Arroyo-López F. N., Guillamón J. M., Salazar G., Querol A. & Barrio E. (2011). Temperature adaptation markedly determines evolution within the genus Saccharomyces. Applied and Environmental Microbiology. 77(7): 2292-2302. DOI: 10.1128/AEM.01861-10.

    Shen X., Zhang A., Gu J., Zhao R., Pan X., Dai Y., Yin L., Zhang Q., Hu X., Wang H. & Zhang D. (2022). Evaluating Salmonella pullorum dissemination and shedding patterns and antibody production in infected chickens. BMC Veterinary Research. 18(1): DOI: 10.1186/s12917-022-03335-z.

    Stier H. & Bischoff S. C. (2016). Influence of Saccharomyces boulardii CNCM I-745 on the gut-associated immune system. Clinical and Experimental Gastroenterology. 9: 269-279. DOI: 10.2147/CEG.S111003.

    Sulmiyati S., Said N. S., Fahrodi D. U., Malaka R. & Maruddin F. (2019). The chaaracteristics yeast isolated from commercial kefir grain, Indonesia. Hasanuddin Journal of Animal Science (HAJAS). 1(1): 26-36. DOI: 10.20956/hajas.v1i1.6519.

    Sun F., Li X., Wang Y., Wang F., Ge H., Pan Z., Xu Y., Wang Y., Jiao X. & Chen X. (2021). Epidemic patterns of antimicrobial resistance of Salmonella enterica serovar Gallinarum biovar Pullorum isolates in China during the past half-century. Poultry Science. 100(3): 100894. DOI: 10.1016/j.psj.2020.12.007.

    Syal P. & Vohra A. (2013). Probiotic potential of yeasts isolated from traditional Indian fermented foods. International Journal of Microbiology Research. 5(2): 390-398. DOI: 10.9735/0975-5276.5.2.390-398.

    Vopálenská I., Hůlková M., Janderová B. & Palková Z. (2005). The morphology of Saccharomyces cerevisiae colonies is affected by cell adhesion and the budding pattern. Research in Microbiology. 156(9): 921-931. DOI: 10.1016/j.resmic.2005.05.012.

    Wang B., Rutherfurd-Markwick K., Liu N., Zhang X.-X., & Mutukumira A. N. (2024). Evaluation of the probiotic potential of yeast isolated from kombucha in New Zealand. Current Research in Food Science. 8: 100711. DOI: 10.1016/j.crfs.2024.100711.

    Wigley P., Jones M. A. & Barrow P. A. (2002). Salmonella enterica serovar Pullorum requires the Salmonella pathogenicity island 2 type III secretion system for virulence and carriage in the chicken. Avian Pathology. 31(5): 501-506. DOI: 10.1080/0307945021000005879.

    Yeakel S. D. (2024). Pullorum Disease in Poultry (Vol. 2024). MSD Veterinary Manual. Retrieved from https://www.msdvetmanual.com/poultry/salmonelloses-in-poultry/pullorum-disease-in-poultry on October 20, 2025.

    Khidhr K. O. & Zubaidy Z. M. A. (2014). Isolation and Identification of Saccharomyces cerevisiae var boulardii and its uses as a probiotic (in vitro). Rafidain Journal of Science. 25(1): 1-11. DOI: 10.33899/rjs.2014.86051.

    Zhang A. W., Lee B. D., Lee S. K., Lee K. W., An G. H., Song K. B. & Lee C. H. (2005). Effects of yeast (Saccharomyces cerevisiae) cell components on growth performance, meat quality, and ileal mucosa development of broiler chicks. Poultry Science. 84(7)P: 1015-1021. DOI: 10.1093/ps/84.7.1015.