Growth performance and immune response of striped catfish as affected by dietary pro-, pre-, or synbiotics derived from Lactobacillus sp.

Date Received: Apr 27, 2025

Date Accepted: Jul 28, 2025

Date Published: Dec 31, 2025

Views

28

Download

11

Section:

ANIMAL SCIENCE – VETERINARY MEDICINE – AQUACULTURE

How to Cite:

Mai, N., & Anh, D. (2025). Growth performance and immune response of striped catfish as affected by dietary pro-, pre-, or synbiotics derived from Lactobacillus sp. Vietnam Journal of Agricultural Sciences, 8(4), 2733–2743. https://doi.org/10.31817/vjas.2025.8.4.06

Growth performance and immune response of striped catfish as affected by dietary pro-, pre-, or synbiotics derived from Lactobacillus sp.

Nguyen Thi Mai (*) 1   , Do Thi Ngoc Anh 1

  • Corresponding author: [email protected]
  • 1 Faculty of Fisheries, Vietnam National University of Agriculture, Hanoi 12400, Vietnam
  • Keywords

    Probiotics, prebiotics, bacterial infection, disease resistance

    Abstract


    The present study aimed to investigate the effects of dietary supplementation of peptidoglycan, Lactobacillus plantarum, or their combination on the growth performance, disease resistance, and immune status of juvenile striped catfish. Fish were fed on a commercial feed supplemented with various concentrations of peptidoglycan (PG5.0: 5.0g per kg of feed), Lactobacillus plantarum (PL5.0: 5.0g per kg of feed), or the combination of the two (PP0.0: 0.0g + 0.0g per kg of feed; PP2.5: 2.5g + 2.5g per kg of feed); PP5.0: 5.0g + 5.0g per kg of feed). Fish were then fed at a rate of 3% of their body weight for six weeks. After the feeding trial, fish were infected with Aeromonas veronii at 50% the lethal dose (LD50, 107 CFU/mL). Blood samples were collected after two, four, and six weeks of the experiment and on the second day after bacterial infection for hematological parameters and immune assays. The results demonstrated that supplementation with PP2.5 significantly improved the growth performance and feed utilization in fish, while the LP5.0-based diet reduced mortality in A. veronii-challenged fish, indicating enhanced disease resistance. The modifications in hematology and immune status were affected by the pro-, pre-, and synbiotics tested in this study. In conclusion, dietary supplementation with peptidoglycan and L. plantarum enhances growth, immunity, and disease resistance in striped catfish, supporting sustainable aquaculture practices for improved fish health and production efficiency, with the optimal ratio being 2.5g peptidoglycan + 2.5g L. plantarum or 5g L. plantarum per kg of diet in striped catfish.

    References

    Ahmad A., Sheikh Abdullah S. R., Hasan H. A., Othman A. R. & Ismail N. (2021). Aquaculture industry: Supply and demand, best practices, effluent and its current issues and treatment technology. Journal of Environmental Management. 287: 112271. DOI: 10.1016/j.jenvman.2021.112271.

    Al-Habsi N., Al-Khalili M., Haque S. A., Elias M., Olqi N. A. & Uraimi T. (2024). Health benefits of prebiotics, probiotics, synbiotics, and postbiotics. Nutrients. 16(22): 1-23. DOI: 10.3390/nu16223955.

    Alvanou M. V., Feidantsis K., Staikou A., Apostolidis A. P., Michaelidis B. & Giantsis I. A. (2023). Probiotics, prebiotics, and synbiotics utilization in crayfish aquaculture and factors affecting gut microbiota. Microorganisms. 11(5). DOI: 10.3390/microorganisms11051232.

    Amenyogbe E., Droepenu E. K., Ayisi C. L., Boamah G. A., Duker R. Q., Abarike E. D. & Huang J. S. (2024). Impact of probiotics, prebiotics, and synbiotics on digestive enzymes, oxidative stress, and antioxidant defense in fish farming: current insights and future perspectives. Frontiers in Marine Science. 11: 1-23. DOI: 10.3389/fmars.2024.1368436.

    Cavalcante R. B., Telli G. S., Tachibana L., Dias D. C., Oshiro E., Natori M. M., Silva W. F. & Ranzani-Paiva M. J. (2020). Probiotics, prebiotics and synbiotics for Nile tilapia: Growth performance and protection against Aeromonas hydrophila infection. Aquaculture Reports. 17: 100343. DOI: 10.1016/j.aqrep.2020.100343.

    Dawood M. A. O. & Koshio S. (2016). Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture. 454: 243-251. DOI: 10.1016/j.aquaculture.2015.12.033.

    Dehaghani P. G., Baboli M. J., Moghadam A. T., Ziaei-Nejad S. & Pourfarhadi M. (2015). Effect of synbiotic dietary supplementation on survival, growth performance, and digestive enzyme activities of common carp (Cyprinus carpio) fingerlings. Czech Journal of Animal Science. 60(5): 224-232. DOI: 10.17221/8172-CJAS.

    Fischer U., Utke K., Somamoto T., Köllner B., Ototake M. & Nakanishi T. (2006). Cytotoxic activities of fish leucocytes. Fish and Shellfish Immunology. 20(2): 209-226. DOI: 10.1016/j.fsi.2005.03.013.

    Hardy H., Harris J., Lyon E., Beal J., Foey A. D. (2013). Probiotics, prebiotics and immunomodulation of gut mucosal defences: Homeostasis and immunopathology. Nutrients. 5(6). DOI: 10.3390/nu5061869.

    Kaushik V. & Sharma S. (2024). Role of probiotics and prebiotics in aquaculture nutrition: a review. International Journal of Research Publication and Reviews. 5(11): 1833-1838. DOI: 10.55248/gengpi.5.1124.3205.

    Markowiak P. & Ślizewska K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 9(9). DOI: 10.3390/nu9091021.

    Mazziotta C., Tognon M., Martini F., Torreggiani E. & Rotondo J. C. (2023). Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells. 12(1): 184. DOI: 10.3390/cells12010184.

    Mokhtar D. M., Zaccone G., Alesci A., Kuciel M., Hussein M. T. & Sayed R. K. A. (2023). Main components of fish immunity: An overview of the fish immune system. Fishes. 8(2). DOI: 10.3390/fishes8020093.

    Mugwanya M., Dawood M. A. O., Kimera F. & Sewilam H. (2022). Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review. Aquaculture and Fisheries. 7(3): 223-243. DOI: 10.1016/j.aaf.2021.12.005.

    Nguyen T. M., Mandiki S. N. M,, Gense C., Tran T. N. T., Nguyen T. H. & Kestemont P. (2020). A combined in vivo and in vitro approach to evaluate the influence of linseed oil or sesame oil and their combination on innate immune competence and eicosanoid metabolism processes in common carp (Cyprinus carpio). Developmental and Comparative Immunology. 102: 103488. DOI: 10.1016/j.dci.2019.103488.

    Nhu T. Q., Bich Hang B. T., Bach L. T., Buu Hue B. T., Quetin-Leclercq J., Scippo M. L., Phuong N. T. & Kestemont P. (2019). Plant extract-based diets differently modulate immune responses and resistance to bacterial infection in striped catfish (Pangasianodon hypophthalmus). Fish and Shellfish Immunology. 92: 913-924. DOI: 10.1016/j.fsi.2019.07.025.

    Okey I. B., Gabriel U. U. & Deekae S. N. (2018). The use of synbiotics (prebiotic and probiotic) in aquaculture development. Sumerianz Journal of Biotechnology. 1(2): 51-60.

    Pawar N. A., Prakash C., Kohli M. P. S., Jamwal A., Dalvi R. S., Devi B. N., Singh S. K., Gupta S., Lende S. R., Sontakke S. D., Gupta S. & Jadhao S. B. (2023). Fructooligosaccharide and Bacillus subtilis synbiotic combination promoted disease resistance, but not growth performance, is additive in fish. Scientific Reports. 13(1): 1-18. DOI: 10.1038/s41598-023-38267-7.

    Ringø E., Løvmo L., Kristiansen M., Bakken Y., Salinas I., Myklebust R., Olsen R. E. & Mayhew T. M. (2010). Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: A review. Aquaculture Research. 41(4): 451-467. DOI: 10.1111/j.1365-2109.2009.02339.x.

    Secombes C. J. & Wang T. (2012). The innate and adaptive immune system of fish. In: Bristan A. (Ed.). Infectious

    Disease in Aquaculture: Prevention and control (Issue May). Woodhead Publishing Limited: 3-68. DOI: 10.1533/9780857095732.1.3.

    Susanto G. N., Budi K. L., Antoro S., Brite M., Sumardi S. & Hadi S. (2024). Synergetic effects of synbiotics and herbs in diets of Asian seabass, Lates calcarifer to enhance immunity and growth. Thalassas: An International Journal of Marine Sciences. 40(4): 1561-1570. DOI: 10.1007/s41208-024-00743-w.

    Sutriana A., Akter M. N., Hashim R. & Nor S. A. M. (2021). Effectiveness of single and combined use of selected dietary probiotic and prebiotics on growth and intestinal conditions of striped catfish (Pangasianodon hypophthalmus, Sauvage, 1978) juvenile. Aquaculture International. 29(6): 2769-2791. DOI:10.1007/s10499-021-00777-4.

    Villumsen K. R., Ohtani M., Forberg T., Aasum E., Tinsley J. & Bojesen A. M. (2020). Synbiotic feed supplementation significantly improves lipid utilization and shows discrete effects on disease resistance in rainbow trout (Oncorhynchus mykiss). Scientific Reports. 10(1):1-12. DOI: 10.1038/s41598-020-73812-8.

    Wee W., Abdul Hamid N. K., Mat K., Khalif R. I. A. R., Rusli N. D., Rahman M. M., Kabir M. A. & Wei L. S. (2024). The effects of mixed prebiotics in aquaculture: A review. Aquaculture and Fisheries. 9(1): 28-34. DOI: 10.1016/j.aaf.2022.02.005.