Diversity and Justification of Quality Differences in Cultivated and Wild Fish – A Systematic Review

Date Received: Jun 03, 2024

Date Accepted: Nov 05, 2025

Date Published: Dec 31, 2025

Views

35

Download

20

How to Cite:

Hoa, T., Ganesh K. , J., Li, G., & Tien, D. (2025). Diversity and Justification of Quality Differences in Cultivated and Wild Fish – A Systematic Review. Vietnam Journal of Agricultural Sciences, 8(4), 2777–2790. https://doi.org/10.31817/vjas.2025.8.4.10

Diversity and Justification of Quality Differences in Cultivated and Wild Fish – A Systematic Review

Truong Huynh Thanh Hoa (*) 1 , Ganesh K. Jaganathan 2 , Bao Li Guo 3   , Doan Thi Kieu Tien 1

  • Corresponding author: [email protected]
  • 1 Faculty of Biological, Chemical, and Food Technology, Can Tho University of Technology, Can Tho city 94150, Vietnam
  • 2 Germplasm Conservation Laboratory, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 3 School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China Introduction
  • Keywords

    Proximate composition, fatty acids, amino acids, minerals, quality

    Abstract


    Fish provide essential nutrients—high-quality proteins, omega-3 fatty acids, and vital vitamins—making them a key component of human nutrition. Previous studies have indicated that consumers prefer wild over cultured fish; however, whether real nutritional differences exist remains unclear. This paper reviews 41 studies on quality differences between wild and cultured fish across 27 species, examining proximate composition, minerals, fatty acids, amino acids, color, and texture. Cultured fish had a significantly lower moisture content but a higher lipid content, while the protein and ash contents showed no significant differences. Cultured fish sometimes exhibited lower polyunsaturated fatty acid percentages. Both groups were mineral-rich, though wild fish contained significantly higher toxic element levels. Color and texture differed substantially by origin. These results suggest both cultured and wild fish possess valuable quality attributes. Variations likely depend on sex, diet, region, season, farming mode, and environmental conditions. Although the core synthesis covers literature until November 2019, selected key studies from 2020-2024 were integrated to reflect recent developments, corroborating and refining the overall conclusions. This review offers insights for sustainable aquaculture quality development.

    References

    Alam M. G., Tanaka A., Allinson G., Laurenson L. J., Stagnitti F. & Snow E. T. (2002). A comparison of trace element concentrations in cultured and wild carp (Cyprinus carpio) of Lake Kasumigaura, Japan. Ecotoxicology and Environmental Safety. 53(3): 348-354.

    Alasalvar C., Taylor K. D. A., Zubcov E., Shahidi F. & Alexis M. (2002). Differentiation of cultured and wild sea bass (Dicentrarchus labrax): total lipid content, fatty acid and trace mineral composition. Food Chemistry. 79(2): 145-150.

    Alvarez V., Medina I., Prego R. & Aubourg S. P. (2009). Lipid and mineral distribution in different zones of farmed and wild blackspot seabream (Pagellus bogaraveo). European Journal of Lipid Science and Technology. 111(10): 957-966.

    Amoussou N., Marengo M., Iko Afe O. H., Lejeune P., Durieux É. D. H., Douny C., Scippo M.-L. & Gobert S. (2022). Comparison of fatty acid profiles of two cultivated and wild marine fish from Mediterranean Sea. Aquaculture International. 30(3): 1435-1452.

    Arechavala-Lopez P., Fernandez‐Jover D., Black K. D., Ladoukakis E., Bayle‐Sempere J. T., Sanchez‐Jerez P. & Dempster T. (2013). Differentiating the wild or farmed origin of Mediterranean fish: a review of tools for sea bream and sea bass. Reviews in Aquaculture. 5(3): 137-157.

    Baki B., Gönener S. & Kaya D. (2015). Comparison of food, amino acid and fatty acid compositions of wild and cultivated sea bass (Dicentrarchus labrax L., 1758). Turkish Journal of Fisheries and Aquatic Sciences. 15(1): 175-179.

    Cahu C., Salen P. & de Lorgeril M. (2004). Farmed and wild fish in the prevention of cardiovascular diseases: Assessing possible differences in lipid nutritional values. Nutrition, Metabolism and Cardiovascular Diseases. 14(1): 34-41.

    Cejas J. R., Almansa E., Jérez S., Bolaños A., Samper M. & Lorenzo A. (2004). Lipid and fatty acid composition of muscle and liver from wild and captive mature female broodstocks of white seabream, Diplodus sargus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 138(1): 91-102.

    Chaguri M. P., Maulvault A. L., Costa S., Gonçalves A., Nunes M. L., Carvalho M. L., Sant'ana L. S., Bandarra N. & Marques A. (2017). Chemometrics tools to distinguish wild and farmed meagre (Argyrosomus regius). Journal of Food Processing and Preservation. 41(6): e13312.

    Chakma S., Rahman M. A., Siddik M. A., Hoque M. S., Islam S. M. & Vatsos I. N. (2022). Nutritional profiling of wild (Pangasius pangasius) and farmed (Pangasius hypophthalmus) pangasius catfish with implications to human health. Fishes. 7(6): 309.

    Claret A., Guerrero L., Aguirre E., Rincón L., Hernández M. D., Martínez I., Peleteiro J. B., Grau A. & Rodríguez-Rodríguez C. (2012). Consumer preferences for sea fish using conjoint analysis: Exploratory study of the importance of country of origin, obtaining method, storage conditions and purchasing price. Food Quality and Preference. 26(2): 259-266.

    Claret A., Guerrero L., Gartzia I., Garcia-Quiroga M. & Ginés R. (2016). Does information affect consumer liking of farmed and wild fish? Aquaculture. 454: 157-162.

    Di̇ncer T., Cakli̇ S. & Cadun A. (2010). Comparison of proximate and fatty acid composition of the flesh of wild and cultured fish species. Archiv Für Lebensmittelhygiene. 61(1): 12-17.

    Domingo J. L. (2016). Nutrients and chemical pollutants in fish and shellfish. Balancing health benefits and risks of regular fish consumption. Critical Reviews in Food Science and Nutrition. 56(6): 979-988.

    Fallah A. A., Siavash Saei‐Dehkordi S. & Nematollahi A. (2011). Comparative assessment of proximate composition, physicochemical parameters, fatty acid profile and mineral content in farmed and wild rainbow trout (Oncorhynchus mykiss). International Journal of Food Science & Technology. 46(4): 767-773.

    FAO (2024). The State of World Fisheries and Aquaculture: Opportunities and Challenges. Rome: Food and Agriculture Organization of the United Nations.

    Francis L. G., Aming M. F., Idris S. I. M., Mazlan N., Othman R., Fui C. F., Shapawi R. & Shah M. D. (2024). Comparison of nutritional compositions and heavy metals analysis between wild and farmed Tilapia (Oreochromis sp.) and Asian Seabass (Lates sp.) in Sabah, Malaysia. Journal of Food Composition and Analysis. 133: 106467.

    Fuentes A., Fernández-Segovia I., Serra J. A. & Barat J. M. (2010). Comparison of wild and cultured sea bass (Dicentrarchus labrax) quality. Food Chemistry. 119(4): 1514-1518.

    Garduño Lugo M., Herrera Solís J. R., Angulo Guerrero J. O., Muñoz Córdova G. & la Cruz Medina D. (2007). Nutrient composition and sensory evaluation of fillets from wild-type Nile tilapia (Oreochromis niloticus, Linnaeus) and a red hybrid (Florida red tilapia× red O. niloticus). Aquaculture Research. 38(10): 1074-1081.

    Goebel S. E., Gaye‐Siessegger J., Baer J. & Geist J. (2017). Comparison of body composition and sensory quality of wild and farmed whitefish (Coregonus macrophthalmus [Nüsslin, 1882]). Journal of Applied Ichthyology. 33(3): 366-373.

    González S., Flick G. J., O’keefe S. F., Duncan S. E., McLean E. & Craig S. R. (2006). Composition of farmed and wild yellow perch (Perca flavescens). Journal of Food Composition and Analysis. 19(6-7): 720-726.

    Grigorakis K. (2007). Compositional and organoleptic quality of farmed and wild gilthead sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) and factors affecting it: A review. Aquaculture. 272(1-4): 55-75.

    Grigorakis K. (2017). Fillet proximate composition, lipid quality, yields, and organoleptic quality of Mediterranean-farmed marine fish: A review with emphasis on new species. Critical Reviews in Food Science and Nutrition. 57(14): 2956-2969.

    Grigorakis K., Fountoulaki E., Vasilaki A., Mittakos I. & Nathanailides C. (2011). Lipid quality and filleting yield of reared meagre (Argyrosomus regius). International Journal of Food Science & Technology. 46(4): 711-716.

    Gu Z., Eils R. & Schlesner M. (2016). Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics.

    Klanian M. G. & Alonso M. G. (2015). Sensory characteristics and nutritional value of red drum Sciaenops ocellatus reared in freshwater and seawater conditions. Aquaculture Research. 46(7): 1550-1561.

    Haard N. F. (1992). Control of chemical composition and food quality attributes of cultured fish. Food Research International. 25(4): 289-307.

    Hearn T. L., Sgoutas S. A., Hearn J. A. & Sgoutas D. S. (1987). Polyunsaturated fatty acids and fat in fish flesh for selecting species for health benefits. Journal of Food Science. 52(5): 1209-1211.

    Hossain M. A. (2011). Fish as source of n-3 polyunsaturated fatty acids (PUFAs), which one is better-farmed or wild. Advance Journal of Food Science and Technology. 3(6): 455-466.

    Jensen I. J., Larsen R., Rustad T. & Eilertsen K. E. (2013). Nutritional content and bioactive properties of wild and farmed cod (Gadus morhua L.) subjected to food preparation. Journal of Food Composition and Analysis. 31(2): 212-216.

    Jiang H., Cheng X., Geng L., Tang S., Tong G. & Xu W. (2017). Comparative study of the nutritional composition and toxic elements of farmed and wild Chanodichthys mongolicus. Chinese Journal of Oceanology and Limnology. 35(4): 737-744.

    Johnston I. A., Li X., Vieira V. L. A., Nickell D., Dingwall A., Alderson R., Campbell P. & Bickerdike R. (2006). Muscle and flesh quality traits in wild and farmed Atlantic salmon. Aquaculture. 256(1-4): 323-336.

    Kalantzi I., Black K. D., Pergantis S. A., Shimmield T. M., Papageorgiou N., Sevastou K. & Karakassis I. (2013). Metals and other elements in tissues of wild fish from fish farms and comparison with farmed species in sites with oxic and anoxic sediments. Food Chemistry. 141(2): 680-694.

    Kendler S., Yilmaz O., Jakobsen A. N., Mangor-Jensen A. & Lerfall J. (2024). European plaice (Pleuronectes platessa) in aquaculture–Nutritional, chemical, and physicochemical quality compared to wild stocks. Aquaculture. 592: 741163.

    Kent M. (1985). Water in fish: Its effects on quality and processing. In: Simatos D. & Multon J. L. (Eds.). Properties of Water in Foods. The Netherlands: Martins Nijhoff Dordrecht: 573-590

    Lall S. P. & Milley J. E. (2008). Trace mineral requirements of fish and crustaceans. In: Schlegel P., Durosay S. & Jongbloed A. W. (Eds.). Trace elements in animal production systems. Wageningen: Academic Press: 203-214

    Lenas D., Chatziantoniou S., Nathanailides C. & Triantafillou D. (2011). Comparison of wild and farmed sea bass (Dicentrarchus labrax L) lipid quality. Procedia Food Science. 1: 1139-1145.

    Loukas V., Dimizas C., Sinanoglou V. J. & Miniadis-Meimaroglou S. (2010). EPA, DHA, cholesterol and phospholipid content in Pagrus pagrus (cultured and wild), Trachinus draco and Trigla lyra from Mediterranean Sea. Chemistry and physics of lipids. 163(3): 292-299.

    Lundebye A.-K., Lock E.-J., Rasinger J. D., Nøstbakken O. J., Hannisdal R., Karlsbakk E., Wennevik V., Madhun A. S., Madsen L. & Graff I. E. (2017). Lower levels of persistent organic pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar). Environmental Research. 155: 49-59.

    Mairesse G., Thomas M., Gardeur J.-N. & Brun-Bellut J. (2006). Effects of geographic source, rearing system, and season on the nutritional quality of wild and farmed Perca fluviatilis. Lipids. 41(3): 221-229.

    Mirmiran P., Hosseini-Esfahani F., Esfandiar Z., Hosseinpour-Niazi S. & Azizi F. (2022). Associations between dietary antioxidant intakes and cardiovascular disease. Scientific reports. 12(1): 1504.

    Mnari A., Bouhlel I., Chraief I., Hammami M., Romdhane M. S., El Cafsi M. & Chaouch A. (2007). Fatty acids in muscles and liver of Tunisian wild and farmed gilthead sea bream, Sparus aurata. Food Chemistry. 100(4): 1393-1397.

    Modzelewska-Kapituła M., Pietrzak-Fiećko R., Zakęś Z. & Szczepkowski M. (2017). Assessment of Fatty Acid Composition and Technological Properties of Northern Pike (Esox lucius) Fillets: The Effects of Fish Origin and Sex. Journal of Aquatic Food Product Technology. 26(10): 1312-1323.

    Molversmyr E., Devle H. M., Naess‐Andresen C. F. & Ekeberg D. (2022). Identification and quantification of lipids in wild and farmed Atlantic salmon (Salmo salar), and salmon feed by GC‐MS. Food science & nutrition. 10(9): 3117-3127.

    Mufas A. & Perera O. (2013). Study on development of pitaya fruit (Hylocereus undatus) incorporated ice cream; an alternative solution to the pitaya cultivators in Sri Lanka.

    Murillo E., Rao K. S. & Durant A. A. (2014). The lipid content and fatty acid composition of four eastern central Pacific native fish species. Journal of Food Composition and Analysis. 33(1): 1-5.

    Mustafa O. Z. & Dikel S. (2015). Comparison of body compositions and fatty acid profiles of farmed and wild rainbow trout (Oncorhynchus mykiss). Food Science and Technology. 3(4): 56-60.

    O'Neill B., Le Roux A. & Hoffman L. C. (2015). Comparative study of the nutritional composition of wild versus farmed yellowtail (Seriola lalandi). Aquaculture. 448: 169-175.

    Olsson G. B., Olsen R. L., Carlehög M. & Ofstad R. (2003). Seasonal variations in chemical and sensory characteristics of farmed and wild Atlantic halibut (Hippoglossus hippoglossus). Aquaculture. 217(1-4): 191-205.

    Orban E., Di Lena G., Ricelli A., Paoletti F., Casini I., Gambelli L. & Caproni R. (2000). Quality characteristics of sharpsnout sea bream (Diplodus puntazzo) from different intensive rearing systems. Food Chemistry. 70(1): 27-32.

    Orban E., Lena G. D., Nevigato T., Casini I., Santaroni G., Marzetti A. & Caproni R. (2002). Quality characteristics of sea bass intensively reared and from lagoon as affected by growth conditions and the aquatic environment. Journal of Food Science. 67(2): 542-546.

    Orban E., Nevigato T., Lena G. D., Casini I. & Marzetti A. (2003). Differentiation in the lipid quality of wild and farmed seabass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata). Journal of Food Science. 68(1): 128-132.

    Ørnholt-Johansson G., Frosch S. & Jørgensen B. M. (2017). Variation in some quality attributes of Atlantic salmon fillets from aquaculture related to geographic origin and water temperature. Aquaculture. 479: 378-383.

    Otwell W. S. & Rickards W. L. (1981). Cultured and wild American eels, Anguilla rostrata: fat content and fatty acid composition. Aquaculture. 26(1-2): 67-76.

    Özden Ö. & Erkan N. (2008). Comparison of biochemical composition of three aqua cultured fishes (Dicentrarchus labrax, Sparus aurata, Dentex dentex). International Journal of Food Sciences and Nutrition. 59(7-8): 545-557.

    Özden Ö., Erkan N. & Ulusoy Ş. (2010). Determination of mineral composition in three commercial fish species (Solea solea, Mullus surmuletus, and Merlangius merlangus). Environmental Monitoring and Assessment. 170(1): 353-363.

    Periago M. J., Ayala M. D., López-Albors O., Abdel I., Martinez C., García-Alcázar A., Ros G. & Gil F. (2005). Muscle cellularity and flesh quality of wild and farmed sea bass, Dicentrarchus labrax L. Aquaculture. 249(1-4): 175-188.

    Petricorena Z. C. (2014). Chemical Composition of Fish and Fishery Products. In: Cheung P. C. K. & Bhavbhuti M. M. (Eds.). Handbook of Food Chemistry. Verlag Berlin Heidelberg: Springer: 1-28.

    Piccolo G., De Riu N., Tulli F., Cappuccinelli R., Marono S. & Moniello G. (2007). Somatic indexes, chemical-nutritive characteristics and metal content in caught and reared sharpsnout seabream (Diplodus puntazzo). Italian Journal of Animal Science. 6(4): 351-360.

    Polymeros K., Kaimakoudi E., Schinaraki M. & Batzios C. (2015). Analysing consumers’ perceived differences in wild and farmed fish. British Food Journal. 117(3): 1007-1016.

    Qiu Y.-W., Lin D., Liu J.-Q. & Zeng E. Y. (2011). Bioaccumulation of trace metals in farmed fish from South China and potential risk assessment. Ecotoxicology and Environmental Safety. 74(3): 284-293.

    Rasul M. G., Jahan I., Yuan C., Sarkar M. S. I., Bapary M. A. J., Baten M. A. & Shah A. A. (2021). Seasonal variation of nutritional constituents in fish of South Asian Countries: A review. Fundamental and Applied Agriculture. 6(2): 193–209-193–209.

    Reig L., Escobar C., Carrassón M., Constenla M., Gil J. M., Padrós F., Piferrer F. & Flos R. (2019). Aquaculture perceptions in the Barcelona metropolitan area from fish and seafood wholesalers, fishmongers, and consumers. Aquaculture. 510: 256-266.

    Rincón L., Castro P. L., Álvarez B., Hernández M. D., Álvarez A., Claret A., Guerrero L. & Ginés R. (2016). Differences in proximal and fatty acid profiles, sensory characteristics, texture, colour and muscle cellularity between wild and farmed blackspot seabream (Pagellus bogaraveo). Aquaculture. 451: 195-204.

    Rodrigues A. P. O., Bicudo Á. J. A., Moro G. V., Gominho-Rosa M. d. C. & Gubiani É. A. (2022). Muscle amino acid profile of wild and farmed pirarucu (Arapaima gigas) in two size classes and an estimation of their dietary essential amino acid requirements. Journal of Applied Aquaculture. 34(2): 441-455.

    Roy P. K. & Lall S. P. (2006). Mineral nutrition of haddock Melanogrammus aeglefinus (L.): a comparison of wild and cultured stock. Journal of Fish Biology. 68(5): 1460-1472.

    Saavedra M., Pereira T. G., Carvalho L. M., Pousão-Ferreira P., Grade A., Teixeira B., Quental-Ferreira H., Mendes R., Bandarra N. & Gonçalves A. (2017). Wild and farmed meagre, Argyrosomus regius: A nutritional, sensory and histological assessment of quality differences. Journal of Food Composition and Analysis. 63: 8-14.

    Sağglık S., Alpaslan M., Gezgin T., Çetintürkc K., Tekinay A. & Güven K. C. (2003). Fatty acid composition of wild and cultivated gilthead seabream (Sparus aurata) and sea bass (Dicentrarchus labrax). European Journal of Lipid Science and Technology. 105(2): 104-107.

    Sant’Ana L. S., Ducatti C. & Ramires D. G. (2010). Seasonal variations in chemical composition and stable isotopes of farmed and wild Brazilian freshwater fish. Food Chemistry. 122(1): 74-77.

    Scheuer F., Sterzelecki F. C., Wagner R., Xavier A. C., de Souza M. P., Brasil E. M., Fracalossi D. & Cerqueira V. R. (2024). Proximate and fatty acids composition in the muscle of wild and farmed sardine (Sardinella brasiliensis). Food Chemistry Advances. 4: 100637.

    Shearer K. D. (1994). Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture. 119(1): 63-88.

    Siano F., Bilotto S., Nazzaro M., Russo G. L., Di Stasio M. & Volpe M. G. (2017). Effects of conventional and organic feed on the mineral composition of cultured European sea bass (Dicentrarchus labrax). Aquaculture Nutrition. 23(4): 796-804.

    Storebakken T., Hung S. S. O., Calvert C. C. & Plisetskaya E. M. (1991). Nutrient partitioning in rainbow trout at different feeding rates. Aquaculture. 96(2): 191-203.

    Suzuki H., Okazaki K., Hayakawa S., Wada S. & Tamura S. (1986). Influence of commercial dietary fatty acids on polyunsaturated fatty acids of cultured freshwater fish and comparison with those of wild fish of the same species. Journal of Agricultural and Food Chemistry. 34(1): 58-60.

    Tacon A. G. J. & Metian M. (2013). Fish matters: importance of aquatic foods in human nutrition and global food supply. Reviews in Fisheries Science. 21(1): 22-38.

    Thanh C., Mith H., Peng C., Servent A., Poss C., Laillou A., Phal S. & Avallone S. (2024). Assessment of the nutritional profiles and potentially toxic elements of wild and farmed freshwater fish in Cambodia. Journal of Food Composition and Analysis. 133: 106357.

    Tkaczewska J., Migdał W. & Kulawik P. (2014). The quality of carp (Cyprinus carpio L.) cultured in various Polish regions. Journal of the Science of Food and Agriculture. 94(14): 3061-3067.

    Valente L. M. P., Cornet J., Donnay-Moreno C., Gouygou J.-P., Berge J.-P., Bacelar M., Escórcio C., Rocha E., Malhão F. & Cardinal M. (2011). Quality differences of gilthead sea bream from distinct production systems in Southern Europe: Intensive, integrated, semi-intensive or extensive systems. Food Control. 22(5): 708-717.

    Wang F., Ma X., Wang W. & Liu J. (2012). Comparison of proximate composition, amino acid and fatty acid profiles in wild, pond-and cage-cultured longsnout catfish (Leiocassis longirostris). International Journal of Food Science & Technology. 47(8): 1772-1776.

    Wang Y., Yu S., Ma G., Chen S., Shi Y. & Yang Y. (2014). Comparative study of proximate composition and amino acid in farmed and wild Pseudobagrus ussuriensis muscles. International Journal of Food Science & Technology. 49(4): 983-989.

    Webb E. C. & O’neill H. A. (2008). The animal fat paradox and meat quality. Meat Science. 80(1): 28-36.

    WHO guideline (2023). Saturated fatty acid and trans-fatty acid intake for adults and children. Geneva: World Health Organization; 2023. Licence: CC BY-NC-SA 3.0 IGO.

    Wood J. D., Enser M., Fisher A. V., Nute G. R., Sheard P. R., Richardson R. I., Hughes S. I. & Whittington F. M. (2008). Fat deposition, fatty acid composition and meat quality: A review. Meat Science. 78(4): 343-358.

    Yeannes M. I. & Almandos M. E. (2003). Estimation of fish proximate composition starting from water content. Journal of Food Composition and Analysis. 16(1): 81-92.

    Yildiz M. (2008). Mineral composition in fillets of sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata): a comparison of cultured and wild fish. Journal of Applied Ichthyology. 24(5): 589-594.