Date Received: Jul 28, 2025
Date Accepted: Sep 15, 2025
Date Published: Sep 30, 2025
Views
Download
Section:
How to Cite:
Effects of Binder Type and Inclusion Level on the Physical and Nutritional Values of Fruit By-product Pellet Feeds
Keywords
Fruit by-product, natural binder, dose of binder, ruminant pellet feed
Abstract
This study investigated the effects of binder type (molasses and cassava flour) and inclusion level (5% and 10%) on the physical and nutritional characteristics of ruminant pellet feeds formulated with pineapple and passion fruit peels. Four treatments were evaluated: 5% molasses, 10% molasses, 5% cassava flour, and 10% cassava flour, each replicated three times in a completely randomized design. The results showed that pellets with 10% molasses had the greatest durability (95.67%), a high density (475.72 mg mL-1), and elevated sugar (18.44%) and saponin (9.47%) contents, alongside improved concentrations of key amino acids such as lysine (1.29%) and glutamic acid (3.12%). By contrast, the 10% cassava flour treatment produced the lowest pellet durability (92.11%), density (468.06 mg mL-1), and amino acid levels, particularly lysine (0.47%) and aspartic acid (1.01%). Overall, molasses, especially at a 10% inclusion, proved more effective than cassava flour in enhancing both the physical quality and nutritional value of fruit by-product pellets. These results highlight the potential of utilizing fruit processing residues with natural binders to produce sustainable, cost-effective pellet feeds for ruminant production systems.
References
Branciari R., Galarini R., Trabalza-Marinucci M., Miraglia D., Roila R., Acuti G., Giusepponi D., Dal Bosco A. & Ranucci D. (2021). Effects of olive mill vegetation water phenol metabolites transferred to muscle through animal diet on rabbit meat microbial quality. Sustainability. 13(8): 4522. DOI: 10.3390/su13084522.
Department of Livestock Production and Health (2025). Bringing animal feed into the price stabilization area. Retrieved from https://livestock-vietnam.com/bringing-animal-feed-into-the-price-stabilization-area/ on May 4, 2025.
Fahrenholz A. C. (2012). Evaluating factors affecting pellet durability and energy consumption in a pilot feed mill and comparing methods for evaluating pellet durability. Dissertation, Kansas State University, Kansas, 2012.
Kaliyan N. & Morey R. V. (2009). Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy. 33(3): 337-359. DOI: 10.1016/j.biombioe.2008.08.005.
Kaliyan N. & Morey R. V. (2010). Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Journal of Bioresource Technology. 101: 1082-1090. DOI: 10.1016/j.biortech.2009.08.064.
Krisnan R. & Ginting S. P. (2009). The utilization of solid ex-decanter as a binder for pelleted complete feed: a physical evaluation of pelleted complete feed. Seminar Nasional Teknologi Peternakan dan Veteriner, Sumatera Utara: 480-486.
Lu D., Tabil L. G., Wang D., Wang G. & Emami G. (2014). Experimental trials to make wheat straw pellets with wood residue and binders. Biomass and Bioenergy. 69: 287-296. DOI: 10.1016/j.biombioe.2014.07.029.
Mahmoud Abdel Gawad A. R., Ahamed Hanafy M., Mohamed Mahmoud A. E. & Hassan Al-Slibi Y. (2020). Effect of tomato pomace, citrus and beet pulp on productive performance and milk quality of egyptian buffaloes. Pakistan Journal of Biological Sciences. 23: 1210-1219. DOI: 10.3923/pjbs.2020.1210.1219.
Martín García A. I., Moumen A., Yáñez Ruiz D. R. & Molina Alcaide E. (2003). Chemical composition and nutrients availability for goats and sheep of two-stage olive cake and olive leaves. Animal Feed Science and Technology. 107: 61-74. DOI: 10.1016/S0377-8401(03)00066-X.
Matra M., Totakul P., Viennasay P., Phesatcha B. & Wanapat M. (2021). Dragon fruit (Hylocereus undatus) peel pellet as a rumen enhancer in Holstein crossbred bulls. Animal Bioscience. 34(4): 594-602. DOI: 10.5713/ajas.20.0151.
Mišljenović N., Čolović R., Vukmirović D., Brlek T. & Bringas C. S. (2016). The effects of sugar beet molasses on wheat straw pelleting and pellet quality. A comparative study of pelleting by using a single pellet press and a pilot-scale pellet press. Fuel Processing Technology. 144: 220-229. DOI: 10.1016/j.fuproc.2016.01.001.
Phesatcha B., Phesatcha K. & Wanapat M. (2022). Mitragyna speciosa korth leaf pellet supplementation on feed intake, nutrient digestibility, rumen fermentation, microbial protein synthesis and protozoal population in Thai native beef cattle. Animals (Basel). 12(23): 3238. DOI: 10.3390/ani12233238.
Prommachart R., Phupaboon S., Matra M., Totakul P. & Wanapat M. (2024). Interaction of a source rich in phytonutrients (fruits peel pellets) and polyunsaturated oil (Tung oil) on in vitro ruminal fermentation, methane production, and nutrient digestibility. Heliyon. 10(12):e32885. DOI: 10.1016/j.heliyon.2024.e32885.
Royani M. & Herawati E. (2020). The physical characteristic test of gamal (Gliricidia sepium) pellet that added of binder. Jurnal Peternakan Nusantara. 6(1): 29. DOI: 10.30997/jpnu.v6i1.2242.
Saade E. & Aslamyah S. (2009). The physical and chemical analysis of tiger prawn’s feed using seaweeds as binder. Jurnal Ilmu Kelautan dan Perikanan. 19(2): 107-115.
Sharma R., Oberoi H. S. & Dhillon G. S. (2016). Fruit and vegetable processing waste : renewable feed stocks for enzyme production. In: Dhillon G. S. & Kaur S. Agro-Industrial Wastes as feedstock for enzyme production. Academic Press: 23-59. DOI: 10.1016/B978-0-12-802392-1.00002-2.
Sokhansanj S. & Turhollow A. F. (2004). Biomass densification – cubing operations and costs for corn stover. Applied Engineering in Agriculture. 20: 495-499. DOI: 10.13031/2013.16480.
Susilawati I., Mansyur & Romi I. Z. (2012). Penggunaan berbagai bahan pengikat terhadap kualitas fisik dan kimia pelet hijauan makanan ternak (Effect of binder on physical and chemical quality of grass pellet). Jurnal Ilmu Ternak. 12(1): 47-50. DOI: 10.24198/jit.v12i1.5137.
Tayengwa T. & Mapiye C. (2018). Citrus and winery wastes: promising dietary supplements for sustainable ruminant animal nutrition, health, production, and meat quality. Sustainability. 10(10): 3718. DOI: 10.3390/su10103718.
Thomas M. & van der Poel A. F. B. (1996). Physical quality of pelleted animal feeds. 1. Criteria for pellet quality. Animal Feed Science and Technology. 61: 89-112. DOI: 10.1016/0377-8401(96)00949-2.
Thomas M., T. van Vliet & van der Poel A. F. B. (1998). Physical quality of pelleted animal feed 3. Contribution of feedstuff components. Animal Feed Science and Technology. 70(1-2): 59-78. DOI: 10.1016/S0377-8401(97)00072-2.
Vastolo A., Calabrò S. & Cutrignelli M. I. A. (2020). Review on the use of agro‐industrial CO‐products in animals’ diets. Italian Journal of Animal Science. 21: 577-594. DOI: 10.1080/1828051X.2022.2039562.
Winowiski T. (1995). Pellet quality in animal feeds. ASA Technical Bulletin Vol. FT21.
Winowiski T. (2019). Measuring the physical quality of pellets. Feed Pelleting reference Guide. Kansas State University.
Yang K., Qing Y., Yu Q., Tang X., Chen G. & Fang R. (2021). By-product feeds : Current understanding and future perspectives. Agriculture. 11(3): 207. DOI: 10.3390/agriculture11030207.