Isolation and Selection of Bacillus pumilus against Colistin-Resistant Escherichia coli F4

Date Received: May 16, 2025

Date Accepted: Jun 16, 2025

Date Published: Jun 28, 2025

Views

8

Download

6

Section:

ANIMAL SCIENCE – VETERINARY MEDICINE – AQUACULTURE

How to Cite:

Lan, N., Hang, N., Hiep, T., Son, H., Giang, H., & Duc, H. (2025). Isolation and Selection of Bacillus pumilus against Colistin-Resistant Escherichia coli F4. Vietnam Journal of Agricultural Sciences, 8(2), 2443–2451. https://doi.org/10.31817/vjas.2025.8.2.

Isolation and Selection of Bacillus pumilus against Colistin-Resistant Escherichia coli F4

Nguyen Thi Lan 1 , Nguyen Thi Thu Hang 1 , Tran Hiep 2 , Hoang Minh Son 1 , Hoang Viet Giang 3   , Hoang Minh Duc (*) 1

  • Corresponding author: [email protected]
  • 1 Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 12400, Vietnam
  • 2 Faculty of Animal Sciences, Vietnam National University of Agriculture, Hanoi 12400, Vietnam
  • 3 Faculty of Food Science and Technology, Vietnam National University of Agriculture, Hanoi 12400, Vietnam
  • Keywords

    B. pumilus, antibiotic alternatives, Escherichia coli F4, antibiotic resistance

    Abstract


    The emergence of antibiotic-resistant Escherichia coli, a major causative agent of diarrhea in piglets, presents significant challenges in the swine industry. Bacillus pumilus, widely recognized for its probiotic potential, has been utilized to promote growth performance, enhance immune responses, and inhibit various pathogens in livestock. This study aimed to isolate and characterize B. pumilus with probiotic characteristics from healthy pigs in Hanoi and Hung Yen. A total of three B. pumilus strains were isolated using a routine culture method, PCR, and MALDI-TOF mass spectrometry. The results revealed that all the isolated B. pumilus strains showed non-hemolytic activity on blood agar. The isolates also exhibited high tolerance in acidic (pH 3.0) and bile salt (0.3%) conditions, with survival rates ranging from 77.97% to 95.38% and 82.61% to 93.62%, respectively. Antimicrobial susceptibility tests revealed resistance to tetracycline and erythromycin, while all isolates were also strongly antagonistic to E. coli F4, with inhibition zones ranging from 16-19mm. Overall, the three B. pumilus isolates demonstrated promising probiotic and antibacterial characteristics, highlighting their potential as alternative agents to control E. coli F4 infections in piglets.

    References

    Abriouel H., Franz C. M. A. P., Omar N. B. & Galvez A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews. 35(1): 201-232. DOI: 10.1111/j.1574-6976.2010.00244.x.

    Adamski P., Byczkowska-Rostkowska Z., Gajewska J., Zakrzewski A. J. & Kłębukowska L. (2023). Prevalence and Antibiotic Resistance of Bacillus sp. Isolated from Raw Milk. Microorganisms. 11(4): 1065. DOI: 10.3390/microorganisms11041065.

    Balasingham K., Valli C., Radhakrishnan L. & Balasuramanyam D. (2017). Probiotic characterization of lactic acid bacteria isolated from swine intestine. Veterinary World. 10(7): 825-829. DOI: 10.14202/vetworld.2017.825-829.

    Bezpalk O. O., Machuskyi O. V., Vygovska L. M. & Danchuk V. V. (2023). Determination of antagonistic properties and biofilm formation in Bacillus app. and Lactobacillus spp. Scientific Reports of NULES of Ukraine. 4(104). DOI: 10.31548/dopovidi4(104).2023.007.

    Castro J., Barros M. M., Araújo D., Campos A. M., Oliveira R., Silva S. & Almeida C. (2022). Swine enteric colibacillosis: Current treatment avenues and future directions. Frontiers in Veterinary Science. 9. DOI: 10.3389/fvets.2022.981207.

    Chaima B., Boutlelis D. A., Touhami L. A., Ghemam Amara, D., Khemakhem M. M., Naccache C., Atanassova M., Zahnit, W., Ahmad S. F., & Messaoudi, M. (2024). Phenotypic characterization and molecular identification of Bacillus pumilus isolated from Algerian goat’s milk and evaluation of its synbiotic effect with Hammada scoparia L. extract and ZnO-NPs. International Journal of Food Properties. 27(1): 1215-1229.

    Chu J., Wang Y., Zhao B., Zhang X-M., Liu K., Mao L. & Kalamiyets E. (2019). Isolation and identification of new antibacterial compounds from Bacillus pumilus. Applied Microbiology and Biotechnology. 103(20): 8375-8381. DOI: 10.1007/s00253-019-10083-y.

    CLSI (2015). M45. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria; Proposed Guideline. Guidelines CLSI. 35(17).

    Dao Gia Bach, Doan Thi Thuy Linh, Luu Thi Thuy Ngan, & Le Thi Hoi (2024). Isolation, selection, and evaluation of characteristics of potential Bacillusstrains for probiotic products. Ministry of Science and Technology, Vietnam. 66(5): 29-33. DOI: 10.31276/VJST (in Vietnamese).

    Darbandi A., Asadi A., Ari M. M., Ohadi, E., Talebi M., Halaj Zadeh M., Emamie A. D., Ghanavati R. & Kakanj M. (2022). Bacteriocins: Properties and potential use as antimicrobials. Journal of Clinical Laboratory Analysis. 36(1): e24093. DOI: 10.1002/jcla.24093.

    Dobrzyński J., Jakubowska Z., Kulkova I., Kowalczyk P., & Kramkowski K. (2023). Biocontrol of fungal phytopathogens by Bacillus pumilus. Frontiers in Microbiology. 14(July): 1-12. DOI: 10.3389/fmicb.2023.1194606.

    Foysal M. J. & Lisa A. K. (2018). Isolation and characterization of Bacillus sp. strain BC01 from soil displaying potent antagonistic activity against plant and fish pathogenic fungi and bacteria. Journal of Genetic Engineering and Biotechnology. 16(2): 387-392. DOI: 10.1016/j.jgeb.2018.01.005.

    Galarza-Seeber R., Latorre J. D., Hernandez-Velasco X., Wolfenden A. D., Bielke L. R., Menconi A., Hargis B. M. & Tellez G. (2015). Isolation, screening and identification of Bacillus spp. as direct-fed microbial candidates for aflatoxin B1 biodegradation. Asian Pacific Journal of Tropical Biomedicine. 5(9): 702-706. DOI: 10.1016/j.apjtb.2015.07.014.

    Government (2020). Decree No. 13/2020/ND-CP of the Government on the Detailed Guidelines for the Animal Husbandry Law. Retrieved from https://vanban.chinhphu.vn/default.aspx?pageid=27160&docid=198924 on January 16, 2024 (in Vietnamese).

    Golnari M., Bahrami N., Milanian Z., Khorasgani M. R., Asadollahi M. A., Shafiei R. & Fatemi S. S. A. (2024). Isolation and characterization of novel Bacillus strains with superior probiotic potential: comparative analysis and safety evaluation. Scientific Reports. 14(1): 1457. DOI: 10.1038/s41598-024-51823-z.

    Gonzalez-Ronquillo M., Villegas-Estrada D., Robles-Jimenez L. E., Garcia Herrera R. A., Villegas-Vázquez V. L. & Vargas-Bello-Pérez E. (2022). Effect of the inclusion of Bacillus spp. in growing–finishing pigs’ diets: A meta-analysis. Animals. 12(17): 2269.

    Gupta S., Mohanty U. & Majumdar R. K. (2021). Isolation and characterization of lactic acid bacteria from traditional fermented fish product Shidal of India with reference to their probiotic potential. LWT. 146: 111641. DOI: 10.1016/j.lwt.2021.111641.

    Halder D., Mandal M., Chatterjee S. S., Pal N. K., & Mandal S. (2017). Indigenous probiotic Lactobacillus isolates presenting antibiotic like activity against human pathogenic bacteria. Biomedicines. 5(2): 31. DOI: 10.3390/biomedicines5020031.

    Hoang Minh Duc, Cam Thi Thu Ha, Pham Hong Ngan, Hoang Minh Son, Le Van Hung, Tran Van Nen, Vu Thi Thu Tra, Vu Van Hoat & Le Van Tung (2022). Antibiotic resistance profile of Escherichia coli isolated from pork and chicken meat selling in retail market in Gia Lam district, Hanoi city. Journal of Veterinary Science and Technology. XXIX(6): 41-47 (in Vietnamese).

    Huligere S. S., Chandana Kumari V. B., Alqadi T., Kumar, S., Cull C. A., Amachawadi R. G. & Ramu R. (2023). Isolation and characterization of lactic acid bacteria with potential probiotic activity and further investigation of their activity by α-amylase and α-glucosidase inhibitions of fermented batters. Frontiers in Microbiology. 13. DOI: 10.3389/fmicb.2022.1042263.

    Hummel A. S., Hertel C., Holzapfel W. H. & Franz C. M. A. P. (2007). Antibiotic Resistances of Starter and Probiotic Strains of Lactic Acid Bacteria. Applied and Environmental Microbiology. 73(3): 730-739. https://doi.org/10.1128/AEM.02105-06.

    Huynh Ngoc Thanh Tam & Huynh Van Thinh (2020 Characteristics of probiotic strains of Bacillus spp. from white leg shrimp (Litopenaeus vannamei) in Kien Giang province. CTU Journal of Innovation and Sustainable Development. 56: 44-52 (in Vietnamese).

    Hyronimus B., Le Marrec C., Sassi A. H. & Deschamps A. (2000). Acid and bile tolerance of spore-forming lactic acid bacteria. International Journal of Food Microbioly. 61(2-3): 193-197. DOI: 10.1016/s0168-1605(00)00366-4.

    Irkitova A. N., Malkova A. V. & Dudnik D. E. (2021). A natural bacterial strain Bacillus pumilus 16: Identification and antibiotic resistance evaluation. Acta Biologica Sibirica. 7: 391-406. DOI: 10.3897/ABS.7.E78412.

    Jiang N., Hong B., Luo K., Li Y., Fu H. & Wang J. (2023). Isolation of Bacillus subtilis and Bacillus pumilus with Anti-Vibrio parahaemolyticus Activity and Identification of the Anti-Vibrio parahaemolyticus Substance. Microorganisms. 11(7): 1667. DOI: 10.3390/microorganisms11071667.

    Latorre J. D., Hernandez-Velasco X., Kuttappan V. A., Wolfenden R. E., Vicente J. L., Wolfenden A. D., Bielke L. R., Prado-Rebolledo O. F., Morales E., Hargis B. M. & Tellez G. (2015). Selection of Bacillus spp. for cellulase and xylanase production as direct-fed microbials to reduce digesta viscosity and Clostridium perfringens proliferation using an in vitro digestive model in different poultry diets. Frontiers in Veterinary Science. 2(AUG). DOI: 10.3389/fvets.2015.00025.

    Latorre J. D., Hernandez-Velasco X., Wolfenden R. E., Vicente, J. L., Wolfenden, A. D., Menconi, A., Bielke, L. R., Hargis, B. M., & Tellez, G. (2016). Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity, and biofilm synthesis as direct-fed microbial candidates for poultry. Frontiers in Veterinary Science. 3(OCT). DOI: 10.3389/fvets.2016.00095.

    Lei J., Ran X., Guo M., Liu J., Yang F. & Chen D. (2023). Screening, Identification, and Probiotic Properties of Bacillus pumilus From Yak. Probiotics and Antimicrobial Proteins. 16: 1-10. DOI: 10.1007/s12602-023-10054-w.

    Luppi A., Gibellini M., Gin T., Vangroenweghe F., Vandenbroucke V., Bauerfeind R., Bonilauri P., Labarque G. & Hidalgo Á. (2016). Prevalence of virulence factors in enterotoxigenic Escherichia coli isolated from pigs with post-weaning diarrhoea in Europe. Porcine Health Management. 2: 20. DOI: 10.1186/s40813-016-0039-9

    Marubashi T., Gracia M. I., Vilà B., Bontempo V., Kritas S. K. & Piskoríková M. (2012). The efficacy of the probiotic feed additive Calsporin® (Bacillus subtilis C-3102) in weaned piglets: combined analysis of four different studies. Journal of Applied Animal Nutrition. 1: e2. DOI: 10.1017/jan.2012.1.

    Morita T., Tanaka I., Ryuda N., Ikari M., Ueno D. & Someya T. (2019). Antifungal spectrum characterization and identification of strong volatile organic compounds produced by Bacillus pumilus TM-R. Heliyon. 5(6): e01817. DOI: 10.1016/j.heliyon.2019.e01817.

    Nguyen Thi Hanh Chi, Van Khanh Ly, Dang Nguyen Hoang Minh, Vo Hong Nhinh & Nguyen Tuyet Giang (2021). Isolation and selection of Bacillus sp. strains for the enzyme production and resistance to E. coli. Journal of Animal Husbandry Sciences and Technics. 265: 93-99 (in Vietnamese).

    Ritter A. C., Paula A., Correa F., Veras F. F. & Brandelli A. (2018). Characterization of Bacillus subtilis Available as Probiotics. Journal of Microbiology Research. 8(2): 23-32. DOI: 10.5923/j.microbiology.20180802.01.

    Saha S., Namai F., Nishiyama K., Villena J. & Kitazawa H. (2024). Role of immunomodulatory probiotics in alleviating bacterial diarrhea in piglets: a systematic review. Journal of Animal Science and Biotechnology. 15(1): 112.

    Tang X., Zeng Y., Xiong K. & Zhongj J. (2024). Bacillus spp. as potential probiotics: promoting piglet growth by improving intestinal health. Frontiers in Animal Nutrition and Metabolism. 11. DOI: 10.3389/fvets.2024.1429233.

    Thy H. T. T, Tri N. N., Quy O. M., Fotedar R., Kannika K., Unajak S. & Areechon N. (2017). Effects of the dietary supplementation of mixed probiotic spores of Bacillus amyloliquefaciens 54A, and Bacillus pumilus 47B on growth, innate immunity and stress responses of striped catfish (Pangasianodon hypophthalmus). Fish and Shellfish Immunology. 60: 391-399. DOI: 10.1016/j.fsi.2016.11.016.

    Todorov S. D., Ivanova I. V., Popov I., Weeks R. & Chikindas M. L. (2022). Bacillus spore-forming probiotics: benefits with concerns? Critical Reviews in Microbiology. 48(4): 513-530. DOI: 10.1080/1040841X.2021.1983517.

    Upadhaya S. D. & Kim I. H. (2021). The impact of weaning stress on gut health and the mechanistic aspects of several feed additives contributing to improved gut health function in weanling piglets - A review. In Animals. 11(8): 2418. DOI: 10.3390/ani11082418.

    Zhang N., Ding J., Li J., Wang L. & Wei Y. (2023). Effects of Bacillus pumilus on growth performance, serum indexes and muscle development-related gene expression of weanling Jintang black goat. Beneficial Microbes. 14: 1-9. DOI: 10.1163/18762891-20220093.

    Zhang Q., Lin Y., Shen G., Zhang H. & Lyu S. (2022). Siderophores of Bacillus pumilus promote 2-keto-L-gulonic acid production in a vitamin C microbial fermentation system. Journal of Basic Microbiology, 62(7): 833-842. DOI: 10.1002/jobm.202200237.

    Zommara M., El-Ghaish S., Haertle T., Chobert J.-M. & Ghanimah M. (2023). Probiotic and technological characterization of selected Lactobacillus strains isolated from different egyptian cheeses. BMC Microbiology. 23(1): 160.