Date Received: Apr 21, 2025
Date Accepted: Jun 15, 2025
Date Published: Jun 28, 2025
Views
Download
Section:
How to Cite:
Free Vibration Analysis of Sandwich Plates with Auxetic Core and Porous FGM Faces Resting on Winkler/Pasternak/Kerr Elastic Foundations
Keywords
Free vibration analysis, sandwich plates, FGM, porosity, auxetic, elastic foundations
Abstract
The paper presents an analytical solution to investigate the free vibration of a sandwich plate with an auxetic core (negative Poisson’s ratio) and functionally graded face sheets containing porosities (PoFGM), based on the four-variable higher-order shear deformation theory (HSDT-4). The plate is assumed to be supported by Winkler, Pasternak, or Kerr elastic foundations. The governing equations were derived using Hamilton’s principle and were solved analytically using the Navier solution for a rectangular plate with simply supported edges. The results were validated through comparisons with previously published studies, demonstrating the accuracy and reliability of the proposed approach. In addition, the effects of material properties (porosity distribution patterns, porosity volume fraction), geometric parameters of the auxetic core unit cell, the geometric dimensions of the plate, and the elastic foundation on the vibration characteristics were thoroughly analyzed.
References
Ait Atmane H., Tounsi A. & Bernard F. (2017). Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations. International Journal of Mechanics and Materials in Design. 13: 71-84.
Alderson A. & Evans K. (1995). Microstructural modelling of auxetic microporous polymers. Journal of Materials Science. 30(13): 3319-3332.
Alibeigloo A. & Alizadeh. M. (2015). Static and free vibration analyses of functionally graded sandwich plates using state space differential quadrature method. European Journal of Mechanics-A/Solids. 54: 252-266.
Bohara R. P. , Linforth S., Nguyen T., Ghazlan A. & Ngo T. (2023). Anti-blast and-impact performances of auxetic structures: A review of structures, materials, methods, and fabrications. Engineering structures. 276: 115377.
Daikh A. A. & Zenkour A. M. (2019). Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory. Materials Research Express. 6(11): 115707.
Ghazwani M. H., Alnujaie A. & Vinh P. V. (2024). A general viscoelastic foundation model for vibration analysis of functionally graded sandwich plate with auxetic core. Defence Technology. 46: 40-58.
Houari M. S. A., Tounsi A. & Bég O. A. (2013). Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory. International Journal of Mechanical Sciences. 76: 102-111.
Imbalzano G., Tran P., Ngo T. D. & Lee P. V. S. (2016). A numerical study of auxetic composite panels under blast loadings. Composite Structures. 135: 339-352.
Kerr A. D. (1965). A study of a new foundation model. Acta Mechanica. 1(2): 135-147.
Kerr A. D. (1984). On the formal development of elastic foundation models. Ingenieur-Archiv. 54(6): 455-464.
Kumar P. & Harsha S. (2022). Static analysis of porous core functionally graded piezoelectric (PCFGP) sandwich plate resting on the Winkler/Pasternak/Kerr foundation under thermo-electric effect. Materials Today Communications. 32: 103929.
Le Thanh Hai, Nguyen Van Long & Tran Minh Tu (2024). Free vibration and dynamic response of functionally graded plates with porosities resting on Kerr’s elastic foundation. Journal of Science and Technology in Civil Engineering (JSTCE). 18(3V): 1-15 (in Vietnamese).
Li M., Soares C. G. & Yan R. (2021). Free vibration analysis of FGM plates on Winkler/Pasternak/Kerr foundation by using a simple quasi-3D HSDT. Composite Structures. 264: 113643.
Li Q., Iu V. & Kou K. (2008). Three-dimensional vibration analysis of functionally graded material sandwich plates. Journal of Sound and Vibration. 311(1-2): 498-515.
Liang C. & Wang Y. Q. (2020). A quasi-3D trigonometric shear deformation theory for wave propagation analysis of FGM sandwich plates with porosities resting on viscoelastic foundation. Composite Structures. 247: 112478.
Merdaci S., Adda H. M., Hakima B., Dimitri R. & Tornabene F. (2021). Higher-order free vibration analysis of porous functionally graded plates. Journal of Composites Science. 5(11): 305.
Nguyen N. V, Nguyen X. H., Nguyen N. T., Kang J. & Lee J. (2021). A comprehensive analysis of auxetic honeycomb sandwich plates with graphene nanoplatelets reinforcement. Composite Structures. 259: 113213.
Pasternak P. (1954). On a new method of analysis of an elastic foundation by means of two foundation constants. Gosudarstvennoe Izdatelstro Liberaturi po Stroitelstvui Arkhitekture, Moscow.
Quoc T. H., Tu T. M. & Tham V. V. (2019). Free vibration analysis of smart laminated functionally graded CNT reinforced composite plates via new four-variable refined plate theory. Materials. 12(22): 3675.
Quoc T. H., Tham V. V., Long N. V. & Tu T. M. (2023). Free vibration and nonlinear dynamic response of sandwich plates with auxetic honeycomb core and piezoelectric face sheets. Thin-Walled Structures. 191: 111141.
Reddy J. (2000). Analysis of functionally graded plates. International Journal for numerical methods in engineering. 47(1‐3): 663-684.
Shahsavari D., Shahsavari M., Li L. & Karami B. (2018). A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation. Aerospace Science and Technology. 72: 134-149.
Thai H. T., Nguyen T. K., Vo P. T. & Lee J. (2014). Analysis of functionally graded sandwich plates using a new first-order shear deformation theory. European Journal of Mechanics-A/Solids. 45: 211-225.
Tran T. T., Pham Q. H., Thoi T. N. & Tran V. T. (2020). Dynamic analysis of sandwich auxetic honeycomb plates subjected to moving oscillator load on elastic foundation. Advances in Materials Science and Engineering. DOI: 10.1155/2020/6309130.
Vu Van Tham, Vu Minh Ngoc & Pham Trong Khoi (2024). Static analysis of sandwich curved FG porous beams resting on Winkler/Pasternak/Kerr foundation. Journal of Science and Technology in Civil Engineering (JSTCE). 18(3V): 48-63 (in Vietnamese).
Vu Van Tham (2025). Vibration characteristics of functionally graded magneto-electro-elastic plates with porosities resting on Kerr’s elastic foundation. Journal of Science and Technology in Civil Engineering (JSTCE). 19(1V): 134-151 (in Vietnamese).
Winkler E. (1867). Die Lehre von der Elasticitaet und Festigkeit: mit besonderer Rücksicht auf ihre Anwendung in der Technik, für polytechnische Schulen, Bauakademien, Ingenieure, Maschinenbauer, Architecten, etc. H. Dominicus (German Edition).
Yousfi M., Ait A. H., Meradjah M., Tounsi A. & Bennai R. (2018). Free vibration of FGM plates with porosity by a shear deformation theory with four variables. Structural engineering and mechanics: An international journal. 66(3): 353-368.
Zenkour A. (2005a). A comprehensive analysis of functionally graded sandwich plates: Part 1 - Deflection and stresses. International journal of solids and structures. 42(18-19): 5224-5242.
Zenkour A. (2005b). A comprehensive analysis of functionally graded sandwich plates: Part 2—Buckling and free vibration. International Journal of Solids and Structures. 42(18-19): 5243-5258.
Zenkour A. M. (2006). Generalized shear deformation theory for bending analysis of functionally graded plates. Applied Mathematical Modelling. 30(1): 67-84.
Zhao X. Y. L. & Liew K. M. (2009). Free vibration analysis of functionally graded plates using the element-free kp-Ritz method. Journal of sound and Vibration. 319(3-5): 918-939.