Working Parameter Optimization for Fruit Sizing Equipment with Discrete Element Simulation

Date Received: Nov 08, 2024

Date Accepted: Jun 10, 2025

Date Published: Jun 28, 2025

Views

3

Download

2

Section:

ENGINEERING AND TECHNOLOGY

How to Cite:

Nguyen, N., Thong, N., Huan, D., Hang, P., Lu, L., Thiet, N., & Tien-Thinh, L. (2025). Working Parameter Optimization for Fruit Sizing Equipment with Discrete Element Simulation. Vietnam Journal of Agricultural Sciences, 8(2), 2483–2492. https://doi.org/10.31817/vjas.2025.8.2.

Working Parameter Optimization for Fruit Sizing Equipment with Discrete Element Simulation

Nguyen Thi Hanh Nguyen 1 , Nguyen Chung Thong 1 , Duong Thanh Huan 1 , Pham Thi Hang 2 , Le Minh Lu 1 , Nguyen Xuan Thiet 1   , Le Tien-Thinh (*) 3, 4

  • Corresponding author: [email protected]
  • 1 Faculty of Engineering, Vietnam National University of Agriculture, Hanoi 12400, Vietnam
  • 2 Faculty of Mechanical Engineering, Thuyloi University, Hanoi 11500, Vietnam
  • 3 Faculty of Mechanical Engineering and Mechatronics, Phenikaa School of Engineering, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12100, Vietnam
  • 4 PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, Hanoi 11300, Vietnam
  • Keywords

    Discrete element simulation, agricultural granular materials, diameter sizing equipment, particle moving speed, particle flowrate

    Abstract


    Despite significant progress in the field of discrete element modeling (DEM) for agricultural granular materials, currently there is little application of discrete element simulations for agricultural fruit and vegetable sorting and sizing equipment. Thus, this study employed discrete element simulation to enhance the optimization of the working parameters for spherical-shape fruit sizing equipment. The research focused on diameter sizing equipment, investigating the influence of key parameters such as the fruit moving speed and flowrate on sizing efficiency. Fifteen simulation configurations were evaluated using commercial altair EDEM software. The results revealed the optimal combinations of working parameters that maximized yield while minimizing error. This study demonstrates the potential of discrete element simulation in minimizing the need for physical prototypes, accelerating the development process, and reducing time and cost.

    References

    Altair E. (2023). EDEM user manual. Altair Engineering Inc.

    Coetzee C. J. (2017). Calibration of the discrete element method. Powder Technology. 310: 104-142.

    Esehaghbeygi A., Pirnazari K., Kamali M. & Razavi J. (2013). Physical, and mechanical properties of three plum varieties (Prunus domestica L.).

    Ghodki B. M. & Goswami T. K. (2017). DEM simulation of flow of black pepper seeds in cryogenic grinding system. Journal of Food Engineering. 196: 36-51.

    Horabik J. & Molenda M. (2016). Parameters and contact models for DEM simulations of agricultural granular materials: A review. Biosystems Engineering. 147: 206-225.

    Huynh H. X., Lam B. H., Le H. V. C., Le T. T. & Duong-Trung N. (2024). Design of an IoT ultrasonic-vision based system for automatic fruit sorting utilizing size and color. Internet of Things. 25: 101017.

    Huynh T., Tran L. & Dao S. (2020). Real-time size and mass estimation of slender axi-symmetric fruit/vegetable using a single top view image. Sensors. 20(18): 5406.

    Huynh T. T. M., Le T. M., That L. T., Van Tran L. & Dao S. V. T. (2022). A two-stage feature selection approach for fruit recognition using camera images with various machine learning classifiers. IEEE Access. 10: 132260-132270.

    Kafashan J., Wiacek J., Ramon H. & Mouazen A. M. (2021). Modelling and simulation of fruit drop tests by discrete element method. Biosystems Engineering. 212: 228-240.

    Kanakabandi C. K. & Goswami T. K. (2019). Determination of properties of black pepper to use in discrete element modeling. Journal of Food Engineering. 246: 111-118.

    Le T.-T. (2022). Investigation of force transmission, critical breakage force and relationship between micro-macroscopic behaviors of agricultural granular material in a uniaxial compaction test using discrete element method. Particulate Science and Technology. 40(5): 620-637.

    Li A., Jia F., Han Y., Chen P., Wang Y., Zhang J., Hao X., Fei J., Shen S. & Feng W. (2023). Study on dynamic response mechanism of rice grains in friction rice mill and scale-up approach of parameter based on discrete element method. Innovative Food Science & Emerging Technologies. 86: 103346.

    Nath S., Kumar A., Mani I., Singh J. K. & Sureja A. K. (2019). Determination of physical and mechanical properties of carrot (Daucus carota) for designing combine harvesting mechanism. The Indian Journal of Agricultural Sciences. 89(6): 1011-1016.

    Romuli S., Karaj S. & Müller J. (2017). Discrete element method simulation of the hulling process of Jatropha curcas L. fruits. Biosystems Engineering. 155: 55-67.

    Tran H. M., Pham K. T., Vo T. M., Le T.-H., Huynh T. T. & Dao S. V. T. (2023). A new approach for estimation of physical properties of irregular shape fruit. IEEE Access. 11: 46550-46560.

    Van Zeebroeck M., Lombaert G., Dintwa E., Ramon H., Degrande G. & Tijskens E. (2008). The simulation of the impact damage to fruit during the passage of a truck over a speed bump by means of the discrete element method. Biosystems Engineering. 101(1): 58-68.

    Van Zeebroeck M., Tijskens E., Dintwa E., Kafashan J., Loodts J., De Baerdemaeker J. & Ramon H. (2006a). The discrete element method (DEM) to simulate fruit impact damage during transport and handling: Case study of vibration damage during apple bulk transport. Postharvest Biology and Technology. 41(1): 92-100.

    Van Zeebroeck M., Tijskens E., Dintwa E., Kafashan J., Loodts J., De Baerdemaeker J. & Ramon H. (2006b). The discrete element method (DEM) to simulate fruit impact damage during transport and handling: Model building and validation of DEM to predict bruise damage of apples. Postharvest Biology and Technology. 41(1): 85-91.

    Wang Y., Zhang Y., Yang Y., Zhao H., Yang C., He Y., Wang K., Liu D. & Xu H. (2020). Discrete element modelling of citrus fruit stalks and its verification. Biosystems Engineering. 200: 400-414.

    Xie S., Zhang Y., Li J. & Liu F. (2024). Analysis of Breaking and Separating Characteristics of Potato–Soil Aggregates Based on the New Type of Swing Separation Sieve. Agronomy. 14(6): 1272.

    Yuan H., Liang S., Wang J. & Lu Y. (2022). Numerical Simulation and Analysis of Vibrating Rice Filling Based on EDEM Software. Agriculture. 12(12): 2013.