Date Received: Sep 28, 2024
Date Accepted: Mar 21, 2025
Date Published: Mar 31, 2025
Views
Download
Section:
How to Cite:
Effects of Dietary Sesame Oil Supplementation on Growth Performance, Feed Utilization, and Fillet Quality in Nile Tilapia
Keywords
Sesame oil, Nile tilapia, fillet quality
Abstract
Sesame oil is an ideal lipid source replacing the fish oil in fish diet thanks to its fatty acid profile and sensory characteristics. This study was conducted to evaluate the impacts of dietary sesame oil supplementation on growth, feed utilization, and fillet quality of Nile tilapia in growth-out stage. The basal feed for tilapia was supplemented with sesame oil at ratios of 0, 10, 20, and 40 g kg-1 corresponding to AS0, AS10, AS20, and AS40 treatments. Fish (~80g) were fed to apparent satiation for 6 weeks. Fish were weighed periodically to monitor the growth rate. At the end of the experiment, fish were dissected to collect the fillet and measure the intestinal indicators; the number of fish and amount of consumed feed served to calculate the survival rate, feed conversion ratio, and protein efficiency rate. Fillet samples were then used to analyze the fatty acid composition, chemical composition, physicochemical indicators, and sensory characteristics. The results showed that the highest value of fish growth and feed utilization were found in AS20. The sesame oil levels did not modify the intestinal parameters but changed the hardness and lightness of fish fillet. The sensory parameters including aroma and sweetness were highest in AS20 and AS40. The significant differences were recorded in total lipid and fatty acid level in fish fillet. In conclusion, the supplementation of sesame oil at 20 g kg-1 diet brings the benefits in fish growth and fillet quality of Nile tilapia in growth-out stage from 80 to 300Â g/fish.
References
Abdel-Ghany H. M., Salem M. E. -S., Ezzat A. A., Essa M. A., Helal A. M., Ismail R. F. & El-Sayed A. -F. M. (2021). Effects of different levels of dietary lipids on growth performance, liver histology and cold tolerance of Nile tilapia (Oreochromis niloticus). Journal of Thermal Biology. 96: 102833. DOI: 10.1016/j.jtherbio.2020.102833.
Abdelhamid A., Elnokrashy A., Ebied N., Al-Deriny S., Abdelkader M., Abozahra N. & Mohamed R. (2024). Canola oil and/or linseed oil improved growth performance, immune-physiological and metabolic responses of Nile tilapia: plant oils improved tilapia health. Journal of the Hellenic Veterinary Medical Society. 75(2): 7458-7470. DOI: 10.12681/jhvms.34891.
Bligh E. G. & Dyer W. J. (1959). A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology. 37: 911-917. DOI: 10.1139/cjm2014-0700.
Borel P., Dangles O. & Kopec R. E. (2023). Fat-soluble vitamin and phytochemical metabolites: production, gastrointestinal absorption, and health effects. Progress in Lipid Research. 90(101220). DOI: 10.1016/j.plipres.2023.101220.
Campanone L. A., Roche L. A., Salvadori V. O. & Mascheroni R. H. (2002). Monitoring of weight losses in meat products during freezing and frozen storage. Food science Technology International. 8: 229-238. DOI: 10.1106/108201302028555.
De Souza E. O., Lowery R. P., Wilson J. M., Sharp M. H., Mobley C. B., Fox C. D., Lopez H. L., Shields K. A., Rauch J. T., Healy J. C., Thompson R. M., Ormes J. A., Joy J. M. & Roberts M. D. (2016). Effects of arachidonic acid supplementation on acute anabolic signaling and chronic functional performance and body composition adaptations. PLoS One. 11: 1-20. DOI: 10.1371/journal.pone.0155153.
Fan Z., Li J., Zhang Y., Wu D., Zheng X., Wang C. & Wang L. (2021). Excessive dietary lipid affecting growth performance, feed utilization, lipid deposition, and hepatopancreas lipometabolism of large-sized common carp (Cyprinus carpio). Frontiers in Nutrition. 8: 1-11. DOI: 10.3389/fnut.2021.694426.
Godoy A. C., Santos O. O., Oxford J. H., de Amorim Melo I. W., Rodrigues R. B., Neu D., Vianna Nunes R. & Boscolo W. R. (2019). Soybean oil for Nile tilapia (Oreochromis niloticus) in finishing diets: Economic, zootechnical and nutritional meat improvements. Aquaculture. 512(734324). DOI: 10.1016/j.aquaculture.2019.734324.
Hematzadeh A. & Jalali S. M. A. (2017). Effects of dietary sesame oil on growth performance, chemical composition, lipid oxidation, and sensory characteristics of rainbow trout Oncorhynchus mykiss. Natural Product Research. 32(23): 2844-2847. DOI: 10.1080/14786419.2017.1380012.
Hugo A., Els S. P., Bothma C., Witt F. H., de Merwe H. J. & van der Fair M. D. (2009). Influence of dietary lipid sources on sensory characteristics of broiler meat. South African Journal of Animal Science. 39(5): 11-14.
Köse I. & Yildiz M. (2013). Effect of diets containing sesame oil on growth and fatty acid composition of rainbow trout (Oncorhynchus mykiss). Journal of Applied Ichthyology. 29: 1318-1324. DOI: 10.1111/jai.12184.
Lin S., Hossain A. & Shahidi F. (2024). Dietary lipid and astaxanthin contents affect the pigmentation of Arctic charr (Salvelinus alpinus). Food Production, Processing and Nutrition. 6(77): 1-12. DOI: 10.1186/s43014-024-00254-4.
Ma H.N., Jin M., Zhu, T.T., Li C.C., Lu Y., Yuan Y., Xiong J. & Zhou Q.C. (2018). Effect of dietary arachidonic acid levels on growth performance, fatty acid profiles and lipid metabolism of juvenile yellow catfish (Pelteobagrus fulvidraco). Aquaculture. 486: 31-41. DOI: 10.1016/j.aquaculture.2017.11.055.
Mai N. T., Kestemont P., Mellery J., Larondelle Y., Mandiki S. N. M. & Tran Thi N.T. (2022). Digestibility of different plant-derived oils and their influence on fatty acid composition in the liver and muscle of juvenile common carp (Cyprinus carpio). Vietnam Journal of Agricultural Sciences. 5: 1537-1550. DOI: 10.31817/vjas.2022.5.3.03.
Markworth J. F., Mitchell C. J., D’Souza R. F., Aasen K. M. M., Durainayagam B. R., Mitchell S. M., Chan A. H. C., Sinclair A. J., Garg M. & Cameron-Smith D. (2018). Arachidonic acid supplementation modulates blood and skeletal muscle lipid profile with no effect on basal inflammation in resistance exercise trained men. Prostaglandins Leukotrienes and Essential Fatty Acids. 128: 74-86. DOI: 10.1016/j.plefa.2017.12.003.
Meng Y., Liu X., Guan L., Bao S., Zhuo L., Tian H., Li C. & Ma R. (2023). Does dietary lipid level affect the quality of triploid rainbow trout and how should it be assessed? Foods. 12(15): 1-19. DOI: 10.3390/foods12010015.
Nakharuthai C., Rodrigues P.M., Schrama D., Kumkhong S. & Boonanuntanasarn S. (2020). Effects of different dietary vegetable lipid sources on health status in Nile Tilapia (Oreochromis niloticus): Haematological indices, immune response parameters and plasma proteome. Animals. 10: 1-19. DOI: 10.3390/ani10081377.
Nguyen T. M., Mandiki S. N. M., Gense C., Tran T. N. T., Nguyen T. H. & Kestemont P. (2020). A combined in vivo and in vitro approach to evaluate the influence of linseed oil or sesame oil and their combination on innate immune competence and eicosanoid metabolism processes in common carp (Cyprinus carpio). Developmental and Comparative Immunology. 102: 103488. DOI: 10.1016/j.dci.2019.103488.
Nguyen T. M., Mandiki S. N. M., Nang Thu T. T., Larondelle Y., Mellery J., Mignolet E., Cornet V., Flamion E. & Kestemont P. (2019). Growth performance and immune status in common carp Cyprinus carpio as affected by plant oil-based diets complemented with β-glucan. Fish Shellfish Immunology. 92: 288-299. DOI: 10.1016/j.fsi.2019.06.011.
Nguyen T. M., Mandiki S. N. M., Salomon J. M. A. J., Baruti J. B., Nang Thu T. T., Nguyen T. H., Nhu T. Q. & Kestemont P. (2021). Pro- and anti-inflammatory responses of common carp Cyprinus carpio head kidney leukocytes to E.coli LPS as modified by different dietary plant oils. Developmental and Comparative Immunology. 114: 103828. DOI: 10.1016/j.dci.2020.103828.
Nguyen T. M., Agbohessou P. S., Nguyen T. H., Thi N. T. T. & Kestemont, P. (2022). Immune responses and acute inflammation in common carp Cyprinus carpio injected by E.coli lipopolysaccharide (LPS) as affected by dietary oils. Fish Shellfish Immunology. 122: 1-12. DOI: 10.1016/j.fsi.2022.01.006.
Nguyen T. M., Tran Thi N. T., Nguyen T. H., Do T. N. A. & Kestemont P. (2023). Immunomodulatory effects of graded levels of docosahexaenoic acid (DHA) in common carp (Cyprinus carpio) - In vitro and in vivo approaches. Fish Shellfish Immunology. 134: 108585. DOI: 10.1016/J.FSI.2023.108585.
Qiufen D., Yong Y. & Shi S. (2012). Nutrition and changes in fish body colouration in catfish. Aquaculture Asia Pacific Magazine. (February): 26-28.
Sokoła-Wysoczanska E., Wysoczanski T., Wagner J., Czyz K., Bodkowski R., Lochynski S. & Patkowska-Sokoła B. (2018). Polyunsaturated Fatty Acids and Their Potential Therapeutic Role in Cardiovascular System Disorders-A Review. Nutrients. 10: 1561. DOI: 10.3390/nu10101561.
Yoo G. Y., Park I. S. & Lee S. (2022). Effects of graded dietary lipid levels on growth performance, fatty acid profile, and hematological characteristics of hybrid pufferfish (Takifugu obscurusxT. rubripes) juveniles. Aquaculture Reports. 24: 101120. DOI: 10.1016/j.aqrep.2022.101120.
Zajic T., Mraz J. & Pickova J. (2016). Evaluation of the effect of dietary sesamin on white muscle lipid composition of common carp (Cyprinus carpio L.) juveniles. Aquaculture Research. 47: 3826-3836. DOI: 10.1111/are.12833.
Zhou J., Feng P., Li Y., Ji H. & Gisbert E. (2024). Effects of dietary lipid levels on lipid accumulation and health status of adult Onychostoma macrolepis. Aquaculture and Fisheries. 9(5): 795-803. DOI: 10.1016/j.aaf.2023.07.008.