Quantifying the Contribution of Road Traffic to Total Suspended Particle Pollution in Dong Thap Province, Vietnam

Date Received: Aug 23, 2024

Date Accepted: May 08, 2025

Date Published: Jun 28, 2025

Views

6

Download

8

Section:

NATURAL RESOURCES AND ENVIRONMENT

How to Cite:

Quan, T., & Ngoc, N. (2025). Quantifying the Contribution of Road Traffic to Total Suspended Particle Pollution in Dong Thap Province, Vietnam. Vietnam Journal of Agricultural Sciences, 8(2), 2530–2540. https://doi.org/10.31817/vjas.2025.8.2.

Quantifying the Contribution of Road Traffic to Total Suspended Particle Pollution in Dong Thap Province, Vietnam

Tran Anh Quan 1   , Nguyen Thi Hong Ngoc (*) 2

  • Corresponding author: [email protected]
  • 1 Faculty of Environment, Hanoi University of Mining and Geology, Hanoi 11909, Vietnam
  • 2 Faculty of Natural Resources and Environment, Vietnam National University of Agriculture, Hanoi 12400, Vietnam
  • Keywords

    Aermod, Dong Thap, air pollution, transportation, TSP

    Abstract


    Total suspended particles (TSP) from transportation sources pose a growing environmental and public health concern in rapidly developing regions like Vietnam's Mekong Delta. This study investigated TSP emissions and dispersion patterns in Dong Thap province, an area undergoing significant economic transformation. Using the AERMOD air quality model integrated with R-LINE, we simulated TSP dispersion from 43 major roads divided into 88 segments. The model incorporated high-resolution ERA5 meteorological data from 2021-2023, Vietnam-specific emission factors, and detailed traffic data for eight vehicle categories. The results revealed significant spatial and temporal variations in TSP concentrations. In extreme scenarios, TSP levels in urban centers like Cao Lanh city reached up to 1,100 μg m-³ for 1-hour averages and 350 μg m-³ for 24-hour averages, substantially exceeding national standards. Annual average TSP concentrations in urban areas approached or potentially exceeded the 100 μg m-³ national standard, even when considering only transportation sources. The region's flat terrain facilitated long-range TSP transport, with concentrations up to 100 μg m-³ detected beyond provincial borders under extreme scenarios. Atmospheric stability strongly influenced TSP dispersion, with very stable conditions contributing to elevated TSP levels. The study highlights the critical need for targeted air quality management in Dong Thap, particularly in urban areas and along major transportation routes.

    References

    Adeniran J. A., Aremu A. S. & Abdulraheem K. A. (2023). Modelling of air emissions from open burning of municipal waste in Ilorin metropolis, North Central Nigeria. Environmental Quality Management. 33(4): 795-808. DOI: 10.1002/tqem.22156.

    Akomolafe O. O., Olorunsogo T., Anyanwu E. C., Osasona F., Ogugua J. O. & Daraojimba O. H. (2024). Air quality and public health: A review of urban pollution sources and mitigation measures. Engineering Science and Technology Journal. 5(2): 259-271. DOI: 10.51594/estj.v5i2.751.

    Carruthers D. J., Seaton M. D., McHugh C. A., Sheng X., Solazzo E. & Vanvyve E. (2011). Comparison of the complex terrain algorithms incorporated into two commonly used local-scale air pollution dispersion models (ADMS and AERMOD) using a hybrid model. Journal of the Air & Waste Management Association. 61(11): 1227-1235. DOI: 10.1080/10473289.2011.609750.

    Chantaraprachoom N., Mochizuki D., Shimadera H., Luong M. V., Matsuo T. & Kondo A. (2023). Impact assessment of biomass burning in Southeast Asia to 2019 annual average PM2.5 concentration in Thailand using atmospheric chemical transport model. E3S Web of Conferences. 379: 01002. DOI: 10.1051/e3sconf/202337901002.

    Cimorelli A. J., Perry S. G., Venkatram A., Weil J. C., Paine R. J., Wilson R. B., Lee R. F., Peters W. D. & Brode R. W. (2005). AERMOD: A dispersion model for industrial source applications. Part I: General model formulation and boundary layer characterization. Journal of Applied Meteorology and Climatology. 44(5): 682-693. DOI: 10.1175/JAM2227.1.

    Dung H. M., Bao N. Q. & Son N. T. (2023). Application of modelling tools for air quality management in Giao Long industrial zone, Ben Tre province, Vietnam. EnvironmentAsia. 16(3): 104-116. DOI: 10.14456/ea.2023.39.

    Ha P. T. T., Linh P. C., Dung D. M. & Bach D. N. (2023). Studying effects of emissions from thermal power plants on ambient air quality in Cam Pha city. VNU Journal of Science: Earth and Environmental Sciences. 39(4): 74-82. DOI: 10.25073/2588-1094/vnuees.4999.

    He J., Gong S., Yu Y., Yu L., Wu L., Mao H., Song C., Zhao S., Liu H., Li X. & Li R. (2017). Air pollution characteristics and their relation to meteorological conditions during 2014-2015 in major Chinese cities. Environmental Pollution. 223: 484-496. DOI: 10.1016/j.envpol.2017.01.050.

    Hoinaski L., Franco D. & de Melo Lisboa H. (2017). An analysis of error propagation in AERMOD lateral dispersion using Round Hill II and Uttenweiller experiments in reduced averaging times. Environmental Technology. 38(5): 639-651. DOI: 10.1080/09593330.2016.1205672.

    Huang D. & Guo H. (2019). Dispersion modeling of odour, gases, and respirable dust using AERMOD for poultry and dairy barns in the Canadian Prairies. Science of the Total Environment. 690: 620-628. DOI: 10.1016/j.scitotenv.2019.07.010.

    Huu D. N. & Ngoc V. N. (2021). Analysis study of current transportation status in Vietnam’s urban traffic and the transition to electric two-wheelers mobility. Sustainability. 13(10): 5577. DOI: 10.3390/su13105577.

    Huy L. N., Kim Oanh N. T., Thu Huong C. T. & Huyen T.-T. (2023). Analysis of atmospheric emissions associated with on-road and inland waterway transport in Vietnam: Past, current and future control scenarios. Atmospheric Pollution Research. 14(8): 101810. DOI: 10.1016/j.apr.2023.101810.

    Lakes Environmental (2023). AERMOD View Gaussian Plume Air Dispersion Model - AERMOD Release Notes Version 12.0. Retrieved from https://www.weblakes.com/products/aermod/resources/lakes_aermod_view_release_notes.pdf on August 13, 2024.

    Liu Y., Zhou Y. & Lu J. (2020). Exploring the relationship between air pollution and meteorological conditions in China under environmental governance. Scientific Reports. 10(1): 14518. DOI: 10.1038/s41598-020-71338-7.

    MONRE - Ministry of Natural Resource and Environment. (2023). QCVN 05:2023/BTNMT National technical regulation on Air quality (in Vietnamese).

    Nguyen T. H. & Phan T. T. H. (2019). Urban transport in Vietnam: A perspective from environmental pollution. European Journal of Engineering and Technology Research. 4(9): 117-122. DOI: 10.24018/ejeng.2019.4.9.152.

    Pasquill F. (1961). The Estimation of the Dispersion of Windborne Material. Meteorological Magazine. 90: 33-49.

    Phung D., Hien T. T., Linh H. N., Luong L. M. T., Morawska L., Chu C., Binh N. D. & Thai P. K. (2016). Air pollution and risk of respiratory and cardiovascular hospitalizations in the most populous city in Vietnam. Science of the Total Environment. 557-558: 322-330. DOI: 10.1016/j.scitotenv.2016.03.070.

    Reddington C. L., Conibear L., Knote C., Silver B. J., Li Y. J., Chan C. K., Arnold S. R. & Spracklen D. V. (2019). Exploring the impacts of anthropogenic emission sectors on PM2.5 and human health in South and East Asia. Atmospheric Chemistry and Physics. 19(18): 11887-11910. DOI: 10.5194/acp-19-11887-2019.

    Salva J., Vanek M., Schwarz M., Gajtanska M., Tonhauzer P. & Ďuricová A. (2021). An assessment of the on-road mobile sources contribution to particulate matter air pollution by AERMOD dispersion model. Sustainability. 13(22): 12748. DOI: 10.3390/su132212748.

    Shaikh K., I mran U., Khan A., Khokhar W. A. & Bakhsh H. (2020). Health risk assessment of emissions from brick kilns in Tando Hyder, Sindh, Pakistan using the AERMOD dispersion model. SN Applied Sciences. 2(7): 1290. DOI: 10.1007/s42452-020-3089-1.

    Thanatrakolsri P. & Sirithian D. (2024). Assessing the additional benefits of Thailand’s approaches to reduce motor vehicle emissions. Energies. 17(10): 2336. DOI: 10.3390/en17102336.

    Thanh N. D. (2023). Climate change scenarios for Southeast Asia and Vietnam: Current status and future research directions. VNU Journal of Science: Earth and Environmental Sciences. 39(1): 1-15. DOI: 10.25073/2588-1094/vnuees.4932.

    Tran Q. A., Nguyen N. H. T., Nguyen P. Q. & Nguyen A. M. (2022). Simulation of thermal power plant source contribution to ambient air concentration in Cam Pha City, Quang Ninh province using AERMOD dispersion model. Journal of Mining and Earth Sciences. 63(3): 35-42. DOI: 10.46326/JMES.2022.63(3).05.

    Tran-Anh Q. & Ngo-Duc T. (2024). Probabilistic projections of temperature and rainfall for climate risk assessment in Vietnam. Journal of Water and Climate Change. 15(5): 2015-2032. DOI: 10.2166/wcc.2024.461.

    Tran-Anh Q., Ngo-Duc T., Espagne E. & Trinh-Tuan L. (2023). A 10-km CMIP6 downscaled dataset of temperature and precipitation for historical and future Vietnam climate. Scientific Data. 10(1): 257. DOI: 10.1038/s41597-023-02159-2.

    Tung H. D., Tong H. Y., Hung W. T. & Anh N. T. N. (2011). Development of emission factors and emission inventories for motorcycles and light duty vehicles in the urban region in Vietnam. Science of The Total Environment. 409(14): 2761-276.

    U.S. Environmental Protection Agency (EPA). (2023). AERMOD Implementation Guide. EPA-454/B-23-009. Retrieved from https://gaftp.epa.gov/Air/aqmg/SCRAM/models/preferred/aermod/aermod_implementation_guide.pdf on August 13, 2024.

    US Environmental Protection Agency (EPA). (2019). New R-LINE Additions to AERMOD 19191 for Refined Transportation Projects. Retrieved from https://www.epa.gov/state-and-local-transportation/new-r-line-additions-aermod-19191-refined-transportation-projects on August 13, 2024.