Date Received: Aug 20, 2024
Date Accepted: Jun 23, 2025
Date Published: Jun 28, 2025
Views
Download
Section:
How to Cite:
Nutritional, Antioxidant, and Antidiabetic Potential of Wild Edible Spondias lakonensis Pierre Fruits
Keywords
Anacardiaceae, Spondias lakonensis, -glucosidase, antioxidant, antidiabetic
Abstract
Spondias lakonensis Pierre is a wild edible fruit used in traditional medicine for the treatment of many diseases. In this study, the nutritional quality and biological activity of S. lakonensis fruits were investigated. The results of the nutritional components analyses were recorded for the vitamin C content (142.80 ± 0.74 mg/100 g) in the pulp, and total ash (2.88 ± 0.07% and 7.25 ± 0.19%), crude lipid (5.80 ± 0.21% and 11.54 ± 0.20%), and total protein (6.70 ± 0.77% and 12.74 ± 1.89%) in the pulp and seeds, respectively. At the suitable conditions for extracting polyphenol compounds (70% acetone at 30°C for 10min with a material/solvent ratio of 1/20 g mL-1), the value of the total polyphenol content (TPC) was 12.32 ± 0.07mg GAE g-1 in the pulp and 24.63 ± 0.07 mg GAE g-1 in the seeds. The results of the DPPH tests indicated that the acetone extracts were good sources of antioxidants with IC50 values of 10.44 ± 0.62 μg mL-1 (pulp) and 29.20 ± 1.76 μg mL-1 (seeds). The extracts also demonstrated strong a-glucosidase inhibitory activities with IC50 values of 0.77 ± 0.02 mg mL-1 in the pulp and 10.24 ± 0.15 mg mL-1 in the seeds. S. lakonensis fruits possess promising nutritional and pharmaceutical potential.
References
Abesundara K. J., Matsui T. & Matsumoto K. (2004). α-Glucosidase inhibitory activity of some Sri Lanka plant extracts, one of which, Cassia auriculata, exerts a strong antihyperglycemic effect in rats comparable to the therapeutic drug acarbose. Journal of Agricultural and Food Chemistry. 52(9): 2541-2545.
Arif M., Zaman K., Fareed S. & Hussain M. (2008). Antibacterial, antidiarrhoeal and ulcer-protective activity of methanolic extract of Spondias mangifera bark. International Journal of Health Research. 1(4): 177-192.
Babbar N., Oberoi H., Sandhu S., and Bhargav V. (2014). Influence of different solvents in extraction of phenolic compounds from vegetable residues and their evaluation as natural sources of antioxidants. Journal of Food Science and Technology. 51: 2568-2575.
Carpenter C. & Ward R. (2017). Food Analysis Laboratory Manual. Springer: Luxembourg.
Chalise J. P., Acharya K., Gurung N., Bhusal R. P., Gurung R., Skalko-Basnet N. & Basnet P. (2010). Antioxidant activity and polyphenol content in edible wild fruits from Nepal. International Journal of Food Sciences and Nutrition. 61(4): 425-432.
Chaudhuri D., Ghate N. B., Singh S. S. & Mandal N. (2015). Methyl gallate isolated from Spondias pinnata exhibits anticancer activity against human glioblastoma by induction of apoptosis and sustained extracellular signal-regulated kinase 1/2 activation. Pharmacognosy Magazine. 11(42): 269-276.
Chirinos R., Rogez H., Campos D., Pedreschi R. & Larondelle Y. (2007). Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Separation and Purification Technology. 55(2): 217-225.
Corthout J., Pieters L., Claeys M., Berghe D. V. & Vlietinck A. (1991). Antiviral ellagitannins from Spondias mombin. Phytochemistry. 30(4): 1129-1130.
Da Silva Siqueira E. M., Félix‐Silva J., De Araújo L. M. L., Fernandes J. M., Cabral B., Gomes J. A. d. S., De Araújo Roque A., Tomaz J. C., Lopes N. P. & De Freitas Fernandes‐Pedrosa M. (2016). Spondias tuberosa (Anacardiaceae) leaves: profiling phenolic compounds by HPLC‐DAD and LC–MS/MS and in vivo anti‐inflammatory activity. Biomedical Chromatography. 30(10): 1656-1665.
Das K., Roy D., Nandi P., Kundu S. & Dutta P. (2015). Spondias-an underutilized potential fruit crop of West Bengal. III International Symposium on Underutilized Plant Species. 1241: 51-56.
De Lima E. Q., De Oliveira E. & De Brito H. R. (2016). Extraction and characterization of the essential oils from Spondias mombin L. (Caj), Spondias purpurea L. (Ciriguela) and Spondia ssp (Cajarana do serto). African Journal of Agricultural Research. 11(2): 105-116.
El-manawaty M. & Gohar L. (2018). In vitro alpha-glucosidase inhibitory activity of Egyptian plant extracts as an indication for their antidiabetic activity. Asian Journal of Pharmaceutical and Clinical Research 11(7): 360-367.
Engels C., Gräter D., Esquivel P., Jiménez V. M., Gänzle M. G. & Schieber A. (2012). Characterization of phenolic compounds in jocote (Spondias purpurea L.) peels by ultra high-performance liquid chromatography/electrospray ionization mass spectrometry. Food Research International. 46(2): 557-562.
Hazra B., Biswas S. & Mandal N. (2008). Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complementary and Alternative Medicine. 8(1): 1-10.
Hoang L. S., Phạm H. N. & Trần V. M. (2015). Antioxidant and alpha-glucosidase inhibitory activity of Spondias cytherea fruit extract. Journal of Science. 3(3): 54-59.
Hoang V. S., Pieter B., & Kejler P. J. A. (2008). Traditional medicinal plants in Ben En national park, VietNam. Blumea. 53: 569-601.
International A. 2009. AOAC Official Method 2001.11 Protein (crude) in animal feed, forage (plant tissue), grain and oil seeds. AOAC International Gaithersburg, MD.
Iwai K., Kim M.-Y., Onodera A. & Matsue H. (2006). α-Glucosidase Inhibitory and Antihyperglycemic Effects of Polyphenols in the Fruit of Viburnum dilatatum Thunb. Journal of Agricultural and Food Chemistry. 54(13): 4588-4592.
Joycharat N., Issarachote P., Sontimuang C. & Voravuthikunchai S. P. (2018). Alpha-glucosidase inhibitory activity of ethanol extract, fractions and purified compounds from the wood of Albizia myriophylla. Natural Product Research. 32(11): 1291-1294.
Khomdram S., Arambam S. & Devi G. S. (2014). Nutritional profiling of two underutilized wild edible fruits Elaeagnus pyriformis and Spondias pinnata. Annals of Agricultural Research. 35(2): 129-135.
Kossah R., Nsabimana C., Zhang H. & Chen W. (2010). Optimization of extraction of polyphenols from Syrian sumac (Rhus coriaria L.) and Chinese sumac (Rhus typhina L.) fruits. Research Journal of Phytochemistry. 4(3): 146-153.
La T. H., Tran T. M. N., Nguyen T. T., & Do M. P. N., (2017). Effect of extaction on total polyphenol content and antioxidant activity of bitter leaf (Vernonia amygdalina). Vanhien University of Science. 5(4): 93-99.
Lai T. K., Acharya K., Chatterjee S. & Sherpa N. L. (2014). Antipseudomonal Ergosteryl Triterpenes from the Paste of Spondias pinnata kruz. Bark, Pre-Treated with Curd-Brew. International Journal of Pharmaceutical Sciences Review and Research. 28(1): 143-146.
Lai T.N.H., Andre C., Rogez H., Mignolet E., Nguyen T.B.T., Larondelle Y. (2015). Nutritional composition and antioxidant properties of the sim fruit (Rhodomyrtus tomentosa). Food Chemistry. 168: 410-416.
Liu S., Yu Z., Zhu H., Zhang W. & Chen Y. (2016). In vitro α-glucosidase inhibitory activity of isolated fractions from water extract of Qingzhuan dark tea. BMC Complementary and Alternative Medicine. 16(1): 378-385.
Mitchell J. D. & Douglas C. (2015). A revision of Spondias L. (Anacardiaceae) in the Neotropics. PhytoKeys. 55: 1-92. DOI: 10.3897/phytokeys.55.8489.
Moradi-Afrapoli F., Asghari B., Saeidnia S., Ajani Y., Mirjani M., Malmir M., Bazaz R. D., Hadjiakhoondi A., Salehi P. & Hamburger M. (2012). In vitro α-glucosidase inhibitory activity of phenolic constituents from aerial parts of Polygonum hyrcanicum. DARU Journal of Pharmaceutical Sciences. 20(1): 37-42.
Muhammad A., Rahman M., Kabir A., Kabir S. & Hossain M. (2011). Antibacterial and cytotoxic activities of Spondias pinnata (Linn. f.) Kurz fruit extract. Antibacterial and cytotoxic activities of Spondias pinnata (Linn. f.) Kurz fruit extract. 2(2): 265-267.
Nguyen V. T., Nguyen N. Q., Pham N. T., Nguyen M. T., Nguyen T. N. Q., Le V. M., Nguyen T. X. L., Nguyen T. T. T., Nguyen T. T. N., & Huynh L. T., (2020). Effect of extraction conditions on total polyphenol and flavonoid content of Soursop leaves (Annona muricata Linn.). Nguyen Tat Thanh University Journal of Science and Technology. 9: 54-56.
Ojo O. A., Afon A. A., Ojo A. B., Ajiboye B. O., Oyinloye B. E. & Kappo A. P. (2018). Inhibitory effects of solvent-partitioned fractions of two nigerian herbs (Spondias mombin Linn. and Mangifera indica L.) on α-amylase and α-glucosidase. Antioxidants. 7(6): 73-83.
Olugbuyiro J., Moody J. & Hamann M. (2013). Phytosterols from Spondias mombin Linn with antimycobacterial activities. African Journal of Biomedical Research. 16(1): 19-24.
Panda B., Patra V., Mishra U., Kar S., Panda B. & Hati M. (2009). Analgesic activities of the stem bark extract of Spondias pinata (Linn. f) Kurz. Journal of Pharmacy Research. 2(5): 825-827.
Pereira C., Oliveira L. L. d., Gonçalves R., Amaral A. C. F., Kuster R. M. & Sakuragui C. M. (2015). Phytochemical and phylogenetic analysis of Spondias (Anacardiaceae). Química Nova. 38(6): 813-816.
Pham T. K. Q., Nguyen V. M., & Nguyen T. H., (2016). Effect of extraction conditions on polyphenol content and antioxidant activity of the extract from Gynura procumbens (Lour) Merr. leaves. Vietnam J. Agri. Sci. 14(8):1248-1260.
Phan, T. A. D., Nguyen, X. H., Nguyen, T. N., Tran, L. Q., & Nguyen, T. T. M. (2012). Study on DPPH free radical scavenging and lipid peroxidation inhibitory activities of Vietnamese medicinal plants. Natural Product Sciences. 18(1): 1-7.
Pierson J. T., Dietzgen R. G., Shaw P. N., Roberts-Thomson S. J., Monteith G. R., and Gidley M. J. (2012). Major Australian tropical fruits biodiversity: Bioactive compounds and their bioactivities. Molecular Nutrition and Food Research. 56: 357-387.
Pinelo M., Tress A. G., Pedersen M., Arnous A. & Meyer A. S. (2007). Effect of cellulases, solvent type and particle size distribution on the extraction of chlorogenic acid and other phenols from spent coffee grounds. American Journal of Food Technology. 2(7): 641-651.
Qaisar M. N., Chaudhary B. A., Sajid M. U. & Hussain N. (2014). Evaluation of α-glucosidase inhibitory activity of dichloromethane and methanol extracts of Croton bonplandianum Baill. Tropical Journal of Pharmaceutical Research. 13(11): 1833-1836.
Rymbai H, Verma V. K., Talang H., Assumi S. R., Devi M. B., Vanlalruati, Sangma R.H.CH., Biam K. P., Chanu L. J., Makdoh B., Singh A. R., Mawleiñ J., Hazarika S. & Mishra V. K. (2023). Biochemical and antioxidant activity of wild edible fruits of the eastern Himalaya, India. Frontiers in Nutrition. 10: 1039965. DOI: 10.3389/fnut.2023.1039965.
Rymbai H., Srivastav M., Sharma R. R., Patel C. R. & Singh A. K. (2013). Bio-active compounds in mango (Mangifera indica L.) and their roles in human health and plant defence - a review. Journal of Horticultural Science and Biotechnology. 88(4): 369-379. DOI: org/10.1080/14620316.2013.11512978.
Rymbai H., Ercisli S., Durul S. M., Kilicgun H., Bayyigit I. & Colak A.M. (2025). Fruit biochemical, bioactive and antioxidant characteristics of Prunus nepalensis. Applied Fruit Science. 67: 127. DOI: 10.1007/s10341-025-01371-1.
Shaw H. A. & Forman L. (1967). The genus Spondias L. (anacardiaceae) in tropical Asia. Kew Bulletin. 1-19.
Silva C. R., Simoni J. A., Collins C. H. & Volpe P. L. (1999). Ascorbic acid as a standard for iodometric titrations. An analytical experiment for general chemistry. Journal of Chemical Education. 76(10): 1421-1422.
Silva E. M., Rogez H. & Larondelle Y. (2007). Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Separation and Purification Technology. 55: 381-387.
Singleton V. L. & Rossi J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture. 16(3): 144-158.
Tabart J., Kevers C., Pincemail J., Defraigne J.-O. & Dommes J. (2009). Comparative antioxidant capacities of phenolic compounds measured by various tests. Food chemistry. 113(4): 1226-1233.
Tandon S. & Rastogi R. (1976). Studies on the chemical constituents of Spondias pinnata. Planta Medica. 29(02): 190-192.
Yusnawan E., Inayati A. & Baliadi Y. (2021). Total phenolic content and antioxidant activity in eight cowpea (Vigna unguiculata) genotypes. IOP Conf. Series: Earth and Environmental Science. 924(2021): 012047.
Wu X., Beecher G. R., Holden J. M., Haytowitz D. B., Gebhardt S. E., & Prior R. L. (2004). Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. Journal of Agricultural and Food Chemistry. 52: 4026-4037.