Date Received: Apr 18, 2024
Date Accepted: Apr 29, 2025
Date Published: Jun 28, 2025
Views
Download
Section:
How to Cite:
Response to GnRH Administration at Artificial Insemination in Crossbred Temperate Dairy Cattle Super-ovulated for Embryo Transfer Program under a Tropical Environment
Keywords
Artificial insemination, cattle, embryo transfer, GnRH, superovulation
Abstract
Multiple ovulation and embryo transfer (MOET) technologies are efficient strategies for multiplying high genetic merit cows. Gonadotrophin releasing hormone (GnRH) plays a key role in the endocrine control of ovulations in cattle. The objective of this study was to assess the effectiveness of exogenous GnRH injections at the time of artificial insemination (AI) in super-ovulated crossbred temperate dairy cows under tropical environments. Super-ovulations (n = 24) were conducted using 12 genetically sound dairy cows with a standard protocol with two AIs in a 12-hour interval. Cows in the treatment group (TG) (n = 12) received GnRH (100µg) at the first AI and cows in the control group (CG) (n = 12) did not. Embryos were collected by the non-surgical retrograde flushing technique on day 7 post-AI. Collected embryos were classified according to the standard FAO guidelines. Ovulation rate, embryo recovery rate, percentage of transferable embryos, and rate of degenerated oocytes were compared between the two groups. The ovulation rate (P = 0.083) tended to be higher while the median numbers of embryos recovered (P = 0.003), embryo recovery rate (P = 0.008), and percentage of transferable embryos (P = 0.019) were significantly higher in the TG. Further, the number of degenerated oocytes was notably lower in the same group. The results of the study revealed that the administration of GnRH at the time of AI in superovulation protocols significantly improved the embryo production, recovery, and the number of transferable embryos in crossbred cows in tropical environments.
References
Alex T. (1988). Local Nonsteroidal Regulations of Ovarian Function. In: Knobil E. & Neill J. (Eds.). The Physiology of Reproduction, Raven Press, Ltd, New York: 527-565.
Al-Katanani Y. M., Drost M., Monson R. L., Rutledge J. J., Krininger III C. E., Block J., Thatcher W. W. & Hansen P. J. (2002) Pregnancy rates following timed embryo transfer with fresh or vitrified in vitro produced embryos in lactating dairy cows under heat stress conditions, Theriogenology. 58(1): 171-182. DOI: 10.1016/S0093-691X(02)00916-0.
Armstrong D. (1994). Heat Stress Interaction with Shade and Cooling. Journal of Dairy Science. 77(7): 2044-2050. DOI: 10.3168/jds.S00 22-0302(94)77149-6.
Arthur G. H., Noakes D. E. & Pearson H. (1982). Infertility in the cow: General considerations, Anatomical, Functional and Managemental causes. In: Arthur G. H., Noakes D. E. & Pearson H. (Eds.). Veterinary Reproduction and Obstetrics, English Language Book Society, Bailliѐre Tindall Ltd, London: 295-327.
Ashworth S. (2013). Standard Operations Procedures Manual, Total Livestock Genetics, EU/OIE Bovine Embryo Collection Centre, Camperdown, Victoria, Australia.
Baba Y., Matsuo H. & Schally A. V. (1971) Structure of the porcine LH- and FSH-releasing hormone. II. Confirmation of the proposed structure by conventional sequential analyses. Biochemical and Biophysical Research Communications: 44(2): 459-463. DOI: 10.1016/0006-291x (71)90623-1. Retrieved from https://pubmed.ncbi.nlm.nih.gov/4946067/ on December 20, 2023.
Baruselli P. S., Batista E. O. S., Vieira L. M., Sales J. N. de. S., Gimenes L. U. & Ferreira R. M. (2017). Intrinsic and extrinsic factors that influence ovarian environment and efficiency of reproduction in cattle, Animal Reproduction: 14(1): 48-60. DOI: 10.21451/1984-3143-AR907.
Bashir S. T., Gastal M. O., Tazawa S. P., Tarso S. G. S., Hales D. B., Cuervo-Arango J., Baerwald A. R. & Gastal E. L. (2016). The mare as a model for luteinized unruptured follicle syndrome: intrafollicular endocrine milieu. Reproduction: 151(3): 271-283. DOI: 10.1530/REP-15-0457.
Betteridge K. J. (1981). A historical look at embryo transfer. Journal of Reproduction and Fertility. 62(1): 1-13. DOI: 10.1530/jrf.0.0620001.
Chankitisakul V., Pitchayapipatkul J., Chuawongboon P., Rakwongrit D., Sakhong D., Boonkum W. & Vongpralub T. (2017). Comparison of three superovulation protocols with or without GnRH treatment at the time of artificial insemination on ovarian response and embryo quality in Thai native heifers. Tropical Animal Health and Production. 49(3): 633-639.
Cognie Y., Baril G., Poulin N. & Mermillod P. (2003). Current status of embryo techniques in sheep and goats. Theriogenology. 59(1): 171-188. DOI: 10.1016/s0093-691x(02)01270-0.
Deguettes Q., Fattal E., Moreau M., Lego E. & Bochot A. (2020). Controlled delivery of follicle-stimulating hormone in cattle. International Journal of Pharmaceutics. 590: 1-24. DOI: 10.1016/j.ijpharm.2020.119904.
Duran P. G. (2000). Technical aspects of the recovery, handling, and transfer of embryos, Philippines. Retrieved from https://www.fftc.org.tw/htmlarea_file/library/20110801173034/tb151a.pdf on May 23, 2021.
Gabriel A. B., Pietro S.B., Pablo M. C. & Claudiney M. M. (2006). The timing of ovulation and insemination schedules in super stimulated cattle. Theriogenology. 65(1): 89-101. DOI: 10.1016/j.theriogenology.2005.10.008.
Hansen P. J. (2009). Effects of heat stress on mammalian reproduction. Philosophical Transactions of the Royal Society B: Biological Sciences. 364(1534): 3341-3350. DOI: 10.1098/rstb.2009.0131.
Hassanein E. M., Szelény Z. & Szenci O. (2024a). Gonadotropin-Releasing Hormone (GnRH) and Its Agonists in Bovine Reproduction I: Structure, Biosynthesis, Physiological Effects, and Its Role in Estrous Synchronization. Animals (Basel). 14(10): 1473. DOI: 10.3390/ani14101473.
Jayathilake W. M. N. T., Perera G. D. R. K., Nizanantha K., Silva L. N. A. de., Alexander P. A. B. D. & Pushpakumara P. G. A. (2019a). Phenotypic Characterization of Sri Lankan Ponies in Central province. The Sri Lanka Veterinary Journal, 71st Annual Convention and Scientific Session of the Sri Lanka Veterinary Association. 65: Retrieved from www.http://journal.slva.org/content/journal on December 1, 2022.
Jayathilake W. M. N. T., Rathnakumara W. M. T. D., Nizanantha K., Madushanka H. T. S. I., Prashanth Y., Perera G. D. R. K. & Alexander P. A. B. D. (2019b). Effect of Heat Stress on Pregnancy Rate in Crossbred Temperate Dairy Cattle under Tropical conditions. Challengers to humankind in the face of new technologies, Proceedings of 12th International Research Conference, General Sir John Kothalawala Defense University, Sri Lanka. 640-643. Retrieved from http://ir.kdu.ac.lk/handle/345/2365 on October 26, 2022.
Jones B. & Kenward M. G. (2015). Design and Analysis of Cross-Over Trials (3rd ed). Chapman and Hall/CRC. ISBN 9781439861424. 385 pages.
Kesler D. J. & Garverick H. A. (1982). Ovarian Cysts in Dairy Cattle: A Review. Journal of Animal Science: 55(5): 1147-1159. DOI: 10.2527/jas1982.5551147x.
Perera G. D. R. K., Pushpakumara P. G. A., Silva L. N. A. de., Perera B. M. A. O. & Alexander P. A. B. D. (2010). Establishment of multiple ovulation and embryo transfer (MOET) technology for goats in Sri Lanka. In: Odongo N. E., Garcia M. & Viljoen G. J. (Eds.). Sustainable Improvement of Animal Production and Health, Food and Agriculture Organization of the United Nations, Rome: 215-258. Retrieved from www.fao.org/docrep/013/i1860e/i1860e00.htm, on December 1, 2024.
Peter A. T. (2004). An update on cystic ovarian degeneration in cattle. Reproduction in Domestic Animals. 39(1): 1-7. DOI: 10.1046/j.0936-6768.2003.00466.x.
Rhodes F. M., Death G. & Entwistle K. W. (1995). Animal and temporal effects on ovarian follicular dynamics in Brahman heifers. Animal Reproduction Science. 38: 265-277.
Prado D. A. R., Elsden R. P. & Seidel G. E. Jr. (1989). Effects of GnRH on superovulated cattle. Theriogenology. 31(2): 317-321. DOI: 10.1016/0093-691x (89)90536-0.
Sakatani M. (2017). Effects of heat stress on bovine preimplantation embryos produced in vitro. Journal of Reproduction and Development, Japanese Society of Animal Reproduction. 63(4): 347-352. DOI: 10.1262/jrd.2017-045.
Schally A. V. (2000). Use of GnRH in preference to LH-RH terminology in scientific papers. Human Reproduction. 15(9): 2059-2061.
Schally A. V., Arimura A., Kastin A. J., Matsuo H., Baba Y., Redding T. W., Nair R. M., Debeljuk L. & White W. F. (1971). Gonadotropin-releasing hormone: One polypeptide regulates the secretion of luteinizing and follicle-stimulating hormones Science. 173: 1036-1038.
Seidel G. E. J. & Seidel S. M. (1991). Evaluation of embryo. In: Seidel G. E. J. & Seidel S. M. (Eds.). Training manual for embryo transfer in cattle. FAO animal production, and health paper 77. Animal Reproduction Laboratory, Colorado State University, USA: ISBN: 92-5-102804-4.
Senn S. (2002). The AB/BA Design with Normal Data. In: Senn S. & Barnett V. (Eds.) Cross‐over Trials In Clinical Research (2nd ed.). John Wiley & Sons, Ltd.: ISBN: 9780471496533: 35-88. DOI: 10.1002/0470854596.
Soumya D., Chakravarty A. K., Singh A., Upadhyay A. & Singh M. (2016). Effect of heat stress on reproductive performances of dairy cattle and buffaloes: A review, Veterinary World. 9(3): 235-244. Retrieved from https://pubmed.ncbi.nlm.nih.gov/27057105/ on December 1, 2024.
Stamatiades G. A. & Kaiser U. B. (2018). Gonadotropin regulation by pulsatile GnRH: Signaling and gene expression. Mol Cell Endocrinol. 463: 131-141. DOI: 10.1016/j.mce.2017.10.015. 2017.
Stephen J. R. (1971). Physiology of female reproduction. In: Stephen J. R. & Stephen J. R. (Eds.). Veterinary Obstetrics and Genital Diseases. New York: 43-375.
Takeda T. (1986). Identification and evaluation of embryos; Techniques for freezing mammalian embryos, short course proceedings, Animal reproduction laboratory, Colorado State University,
Colorado. Retrieved from https://books.google.lk/books/about/Techniques_for_Freezing_Mammalian_Embryo.html?id=BzkMgK57b2EC&redir_esc=y on December 1, 2022.
Thatcher W. W., Drost M., Savio J. D., Macmillan K. L., Entwistle K. W., Schmitt E. J., De la Sota R. L. & Morris G. R. (1993). New clinical uses of GnRH and its analogs in cattle. Animal Reproduction Science: 33: 27-49. DOI: 10.1016/0378-4320(93)90105-Z.
Uddin A. H. M. M., Kiro R. P., Yunmei S., Sanjay G. & Roy N. K. (2023). Application of Exogenous GnRH in Food Animal Production. Animals. 13(12): 1891. DOI: 10.3390/ani13121891.
Ursula B. K. (2017). Gonadotrophin Hormones. In: Melmed S. (Ed.). The Pituitary (4th ed.): 203-250. DOI: 10.1016/B978-0-12-804169-7.00007-6.
Voelz B. E., Rocha L., Scortegagna F., Stevenson J. S. & Mendonca L. G. D. (2016). Treatment of lactating dairy cows with gonadotropin-releasing hormone before the first insemination during summer heat stress, Journal of Dairy Science. 99: 7612-7623. DOI: 10.3168/jds.2016-10970.
VYMaps.com (2022). Veterinary Teaching Farm-University of Peradeniya. Retrieved from https://vymaps.com/LK/Veterinary-Teaching-Farm-University-of-Peradeniya-503874866373057/ on November 20, 2022.
Wolfenson D., Roth Z. & Meidan R. (2000). Impaired reproduction in heat-stressed cattle: basic and applied aspects. Animal Reproduction Science. July 2(60-61): 535-547. DOI: 10.1016/S0378-4320(00)00102-0.
World weather online (2022). Retrieved from https://www.worldweatheronline.com/peradeniya-weather-averages/ central/lk.aspx on October 26, 2022.
Youngquist R. S. (1988). Anestrus and Infertility in the cow. In: Laing J. A., Morgan W. J. B. & Wagner W. C. (Eds.). Fertility and Infertility in Veterinary Practice, English Language Book Society, Baillire Tindall Ltd, London: 91-112.