Promoter Analysis and Expression Patterns of the YABBY Transcription Factor Family in Cassava (Manihot esculenta) under Various Environmental Conditions

Date Received: Aug 02, 2024

Date Accepted: Jan 17, 2025

Date Published: Mar 31, 2025

Views

36

Download

15

Section:

ENGINEERING AND TECHNOLOGY

How to Cite:

Hai, T., Trung, N., Bach, N., Gioi, D., Khanh, L., Khoa, T., … Diep, H. (2025). Promoter Analysis and Expression Patterns of the YABBY Transcription Factor Family in Cassava (Manihot esculenta) under Various Environmental Conditions. Vietnam Journal of Agricultural Sciences, 8(1), 2395–2403. https://doi.org/10.31817/vjas.2025.8.1.

Promoter Analysis and Expression Patterns of the YABBY Transcription Factor Family in Cassava (Manihot esculenta) under Various Environmental Conditions

Tong Van Hai 1 , Nguyen Quoc Trung 1 , Nguyen Duc Bach 1 , Dong Huy Gioi 1 , Le Duy Khanh 2 , Tran Dang Khoa 2 , Le Thanh Tinh 2 , Le Thi Ngoc Quynh 3 , Chu Duc Ha (*) 2   , Hoang Thi Diep 2

  • Corresponding author: cd.ha@vnu.edu.vn
  • 1 Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi 12400, Vietnam
  • 2 University of Engineering and Technology, Vietnam National University, Hanoi 11300, Vietnam
  • 3 Department of Biotechnology, Thuy Loi University, Hanoi 11500, Vietnam
  • Keywords

    Cassava, cis-regulatory element, expression level, transcription factor, YABBY

    Abstract


    The YABBY transcription factor (TF) family is a group of plant-specific proteins characterized by a unique structure comprised of a C2C2 zinc finger domain and a helix-loop-helix YABBY domain. These TFs play crucial roles in regulating various aspects of plant development, such as lateral organ formation and leaf polarity, as well as mediating responses to abiotic and biotic stresses. This study investigated the potential functions and expression profiles of 13 genes encoding the YABBY TF family in cassava (Manihot esculenta) under various stress conditions. Through a comprehensive analysis of promoter regions, we identified numerous cis-regulatory elements (CREs) associated with abiotic stress responses and phytohormone regulation. Specific CREs, such as low-temperature responsive elements and MYB recognize sites, were linked to cold and drought responses, respectively, suggesting their involvement in stress adaptation. RNA-Seq analysis under drought and PEG6000 treatments revealed significant transcriptional changes, with several YABBY genes being upregulated or downregulated, indicating their roles in drought tolerance and water use efficiency. Under biotic stress conditions, specifically cassava brown strike disease inoculation, YABBY genes exhibited diverse expression patterns, with notable downregulation of certain genes, suggesting their potential regulatory roles in stress responses. Taken together, these findings highlighted the diverse and critical functions of YABBY TFs in cassava's stress resilience and developmental processes.

    References

    Abe H., Urao T., Ito T., Seki M., Shinozaki K. & Yamaguchi-Shinozaki K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell. 15(1): 63-78.

    Barrett T., Wilhite S. E., Ledoux P., Evangelista C., Kim I. F., Tomashevsky M., Marshall K. A., Phillippy K. H., Sherman P. M., Holko M., Yefanov A., Lee H., Zhang N., Robertson C. L., Serova N., Davis S. & Soboleva A. (2013). NCBI GEO: archive for functional genomics data sets - update. Nucleic Acids Research. 41(Database issue): D991-5.

    Bredeson J. V., Lyons J. B., Prochnik S. E., Wu G. A., Ha C. M., Edsinger-Gonzales E., Grimwood J., Schmutz J., Rabbi I. Y., Egesi C., Nauluvula P., Lebot V., Ndunguru J., Mkamilo G., Bart R. S., Setter T. L., Gleadow R. M., Kulakow P., Ferguson M. E., Rounsley S. & Rokhsar D. S. (2016). Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nature Biotechnology. 34(5): 562-570.

    Chu H. D., Nguyen K. H., Watanabe Y., Le D. T., Pham T. L. T., Mochida K. & Tran L. P. (2018). Identification, structural characterization and gene expression analysis of members of the Nuclear Factor-Y family in chickpea (Cicer arietinum L.) under dehydration and abscisic acid treatments. International Journal of Molecular Sciences. 19(11): 3290.

    Ding Z., Fu L., Yan Y., Tie W., Xia Z., Wang W., Peng M., Hu W. & Zhang J. (2017). Genome-wide characterization and expression profiling of HD-Zip gene family related to abiotic stress in cassava. PLoS One. 12(3): e0173043.

    Edgar R., Domrachev M. & Lash A. E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Researh. 30(1): 207-210.

    Finet C., Floyd S. K., Conway S. J., Zhong B., Scutt C. P. & Bowman J. L. (2016). Evolution of the YABBY gene family in seed plants. Evolution & Development. 18(2): 116-126.

    Gleadow R., Pegg A. & Blomstedt C. K. (2016). Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions. Journal of Experimental Botany. 67(18): 5403-5413.

    Goodstein D. M., Shu S., Howson R., Neupane R., Hayes R. D., Fazo J., Mitros T., Dirks W., Hellsten U., Putnam N. & Rokhsar D. S. (2012). Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research. 40(Database issue): D1178-86.

    Guira F., Some K., Kabore D., Sawadogo-Lingani H., Traore Y. & Savadogo A. (2017). Origins, production, and utilization of cassava in Burkina Faso, a contribution of a neglected crop to household food security. Food Science and Nutrition. 5(3): 415-423.

    Hall T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 41: 95-98.

    Hussain M., Javed M. M., Sami A., Shafiq M., Ali Q., Mazhar H. S., Tabassum J., Javed M. A., Haider M. Z., Hussain M., Sabir I. A. & Ali D. (2024). Genome-wide analysis of plant specific YABBY transcription factor gene family in carrot (Dacus carota) and its comparison with Arabidopsis. BMC Genomic Data. 25(1): 26.

    Kong L., Sun J., Jiang Z., Ren W., Wang Z., Zhang M., Liu X., Wang L., Ma W. & Xu J. (2023). Identification and expression analysis of YABBY family genes in Platycodon grandiflorus. Plant Signaling and Behavior. 18(1): 2163069.

    Lescot M., Déhais P., Thijs G., Marchal K., Moreau Y., Van de Peer Y., Rouzé P. & Rombauts S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research. 30(1): 325-327.

    Li S., Cui Y., Zhou Y., Luo Z., Liu J. & Zhao M. (2017). The industrial applications of cassava: current status, opportunities and prospects. Journal of the Science of Food and Agriculture. 97(8): 2282-2290.

    Liu H., Ye H., Wang J., Chen S., Li M., Wang G., Hou N. & Zhao P. (2022). Genome-wide identification and characterization of YABBY gene gamily in Juglans regia and Juglans mandshurica. Agronomy. 12(8): 1914.

    Love M., Huber W. & Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 15: 550.

    Malik A. I., Kongsil P., Nguyen V. A., Ou W., Sholihin, Srean P., Sheela M. N., Becerra Lopez-Lavalle L. A., Utsumi Y., Lu C., Kittipadakul P., Nguyen H. H., Ceballos H., Nguyen T. H., Selvaraj Gomez M., Aiemnaka P., Labarta R., Chen S., Amawan S., Sok S., Youabee L., Seki M., Tokunaga H., Wang W., Li K., Nguyen H. A., Nguyen V. D., Ham L. H. & Ishitani M. (2020). Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breed Science. 70(2): 145-166.

    Maruthi M. N., Bouvaine S., Tufan H. A., Mohammed I. U. & Hillocks R. J. (2014). Transcriptional response of virus-infected cassava and identification of putative sources of resistance for cassava brown streak disease. PLoS One. 9(5): e96642.

    Maruyama K., Todaka D., Mizoi J., Yoshida T., Kidokoro S., Matsukura S., Takasaki H., Sakurai T., Yamamoto Y. Y., Yoshiwara K., Kojima M., Sakakibara H., Shinozaki K. & Yamaguchi-Shinozaki K. (2012). Identification of cis-acting promoter elements in cold- and dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Research. 19(1): 37-49.

    Nakashima K. & Yamaguchi-Shinozaki K. (2013). ABA signaling in stress-response and seed development. Plant Cell Reports. 32(7): 959-970.

    Okogbenin E., Setter T. L., Ferguson M., Mutegi R., Ceballos H., Olasanmi B. & Fregene M. (2013). Phenotypic approaches to drought in cassava: review. Frontiers in Physiology. 4: 93.

    Olsen K. M. & Schaal B. A. (1999). Evidence on the origin of cassava: Phylogeography of Manihot esculenta. Proceedings of the National Academy of Sciences of the United States of America. 96(10): 5586-5591.

    Patil B. L., Legg J. P., Kanju E. & Fauquet C. M. (2015). Cassava brown streak disease: a threat to food security in Africa. Journal of General Virology. 96(Pt 5): 956-968.

    Romanova M. A., Maksimova A. I., Pawlowski K. & Voitsekhovskaja O. V. (2021). YABBY genes in the development and evolution of land plants. International Journal of Molecular Sciences. 22(8): 4139.

    Shan Z., Luo X., Wei M., Huang T., Khan A. & Zhu Y. (2018). Physiological and proteomic analysis on long-term drought resistance of cassava (Manihot esculenta Crantz). Scientific Reports. 8(1): 17982.

    Shchennikova A. V., Slugina M. A., Beletsky A. V., Filyushin M. A., Mardanov A. A., Shulga O. A., Kochieva E. Z., Ravin N. V. & Skryabin K. G. (2018). The YABBY genes of leaf and leaf-like organ polarity in leafless plant Monotropa hypopitys. International Journal of Genomics. 2018: 7203469.

    Tomlinson K. R., Bailey A. M., Alicai T., Seal S. & Foster G. D. (2018). Cassava brown streak disease: historical timeline, current knowledge and future prospects. Molecular Plant Pathology. 19(5): 1282-1294.

    Turyagyenda L. F., Kizito E. B., Ferguson M., Baguma Y., Agaba M., Harvey J. J. & Osiru D. S. (2013). Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava. AoB Plants. 5: plt007.

    Vinh T. T., Chien D. L., Tinh T. L., Trinh T. P., Quyen T. H., Thuy C. P., Trien M. P., Ha D. C. & Diep T. H. (2024). Identification, annotation, and expression profiles of genes encoding the YABBY transcription factor family in cassava (Manihot esculenta): An in silico survey. The 3rd International Conference of Advances in Information and Communication Technology: 1-8.

    Yamaguchi-Shinozaki K. & Shinozaki K. (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends in Plant Sciences. 10(2): 88-94.

    Zhang T., Li C., Li D., Liu Y. & Yang X. (2020). Roles of YABBY transcription factors in the modulation of morphogenesis, development, and phytohormone and stress responses in plants. Journal of Plant Research. 133(6): 751-763.

    Zhao P., Liu P., Shao J., Li C., Wang B., Guo X., Yan B., Xia Y. & Peng M. (2015a). Analysis of different strategies adapted by two cassava cultivars in response to drought stress: ensuring survival or continuing growth. Journal of Experimental Botany. 66(5): 1477-1488.

    Zhu Y., Luo X., Wei M., Khan A., Munsif F., Huang T., Pan X. & Shan Z. (2020). Antioxidant enzymatic activity and its related genes expression in cassava leaves at different growth stages play key roles in sustaining yield and drought tolerance under moisture stress. Journal of Plant Growth Regulation. 39(2): 594-607.