Allelopathic Potential and Hormesis Effect of Cosmos bipinnatus Extracts for Weed Management in Rice Cultivation

Date Received: Dec 02, 2024

Date Accepted: Mar 31, 2025

Date Published: Mar 31, 2025

Views

12

Download

8

How to Cite:

Thi, H., Trang, N., & Cuong, N. (2025). Allelopathic Potential and Hormesis Effect of Cosmos bipinnatus Extracts for Weed Management in Rice Cultivation. Vietnam Journal of Agricultural Sciences, 8(1), 2359–2372. https://doi.org/10.31817/vjas.2025.8.1.

Allelopathic Potential and Hormesis Effect of Cosmos bipinnatus Extracts for Weed Management in Rice Cultivation

Ho Le Thi (*) 1 , Nguyen Thi Thuy Trang 1   , Nguyen The Cuong 2

  • Corresponding author: hlthi@ctu.edu.vn
  • 1 Plant Protection Faculty, College of Agriculture, Can Tho University, Can Tho 94000, Vietnam
  • 2 Agronomy Department, Cuu Long Delta Rice Research Institute, Can Tho 94000, Vietnam
  • Keywords

    Cosmos bipinnatus, plant extract, weed inhibition, hormesis, biological control

    Abstract


    Weed management in rice cultivation faces increasing challenges due to herbicide resistance and environmental concerns, necessitating alternative, eco-friendly strategies. Among plant-based bioherbicides, Cosmos bipinnatus has emerged as a promising candidate due to its allelopathic potential. This study evaluated the efficacy of C. bipinnatus extracts in inhibiting key weed species, namely Echinochloa zcrus-galli, Leptochloa chinensis, Fimbristylis miliacea, and weedy rice (Oryza sativa f. spontanea). Bioassays demonstrated significant inhibition of radicle and coleoptile growth in these weeds, with stronger effects at higher concentrations. At 0.48 g mL⁻¹, inhibition reached 88% for E. crus-galli coleoptiles, 93% for its radicles, and 76% for L. chinensis coleoptiles. Notably, weedy rice, a major competitor in rice fields, was effectively suppressed, suggesting the potential of C. bipinnatus for integrated weed management. However, low extract concentrations (<0.06 g mL⁻¹) induced a hormesis effect, slightly promoting growth in some weeds and rice cultivars (OM380, OM5451, and OM18). Phytochemical analysis identified high phenolic (94.48 mg GAE g-1) and flavonoid (514.61 mg QE g-1) contents, particularly in leaves (45.93 mg GAE/g phenolic, 107.13 mg QE/g flavonoid) and flowers (63.89 mg GAE/g phenolic, 127.74 mg QE/g flavonoid), indicating their role as key inhibitory agents. These findings highlight C. bipinnatus as a viable biological solution for sustainable weed control, particularly against weedy rice. Further research is needed to optimize application strategies and minimize potential crop impacts, ensuring effective field applications while reducing reliance on synthetic herbicides in rice production systems.

    References

    Abbott W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology. 18(2): 265-267. DOI: 10.1093/jee/18.2.265.

    Ain Q., Mushtaq W., Shadab M. & Siddiqui M. B. (2023). Allelopathy: An alternative tool for sustainable agriculture. Physiology and Molecular Biology of Plants. 29(4): 495-511. DOI: 10.1007/s12298-023-01305-9.

    Ali H. H., Peerzada A. M., Hanif Z., Hashim S. & Chauhan B. S. (2017). Weed management using crop competition in Pakistan: A review. Crop Protection. 95: 22-30. DOI: 10.1016/j.cropro.2016.07.009.

    Anaya A. L. (1999). Allelopathy as a tool in the management of biotic resources in agroecosystems. Critical Reviews in Plant Sciences. 18(6): 697-739. DOI: 10.1080/07352689991309450.

    Anjum T., Bajwa R. & Muhammad S. (2010). Allelopathic potential of aqueous extracts of Cosmos bipinnatus and Eclipta alba on the growth of Triticum aestivum. Pakistan Journal of Botany. 42(5): 3327-3333.

    Asghari J. & Tewari J. P. (2007). Allelopathic potentials of eight barley cultivars on Brassica juncea (L.) Czern. and Setaria viridis (L.) P. Beauv. Journal of Agricultural Science and Technology. 9(2): 165-176.

    Asha S., & Sivaji K. (2015). Phytochemical screening of Euphorbia hirta Linn leaf extracts. World Journal of Pharmaceutical Sciences. 3(12): 2134-2138.

    Chen B. M., Liao H. X., Chen W. B., Wei H. J. & Peng S. L. (2017). Role of allelopathy in plant invasion and control of invasive plants. Allelopathy Journal. 41(2): 155-166. DOI: 10.26651/2017-41-2-1092.

    Cheng F. & Cheng Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science. 6: 1020. DOI: 10.3389/fpls.2015.01020.

    Chin D. V. (2001). Biology and management of barnyardgrass, red sprangletop and weedy rice. Weed Biology and Management. 1(1): 37-41. DOI: 10.1046/j.1445-6664.2001.00009.x.

    Chon S.-U., Kim Y.-M. & Lee J.-C. (2003). Herbicidal potential and quantification of suspected allelochemicals from four grass crop extracts. Journal of Agronomy and Crop Science. 189(3): 227-235. DOI: 10.1046/j.1439-037X.2003.00048.x.

    Chou C. H. (1999). Roles of allelopathy in plant biodiversity and sustainable agriculture. Critical Reviews in Plant Sciences. 18(5): 609-636. DOI: 10.1080/07352689991309159.

    Duke S. O. & Dayan F. E. (2006). Modes of action of phytotoxins from plants. Natural Product Communications. 1(2): 103-110. DOI: 10.1177/1934578X0600100207.

    Farooq M., Jabran K., Cheema Z. A., Wahid A. & Siddique K. H. (2011). The role of allelopathy in agricultural pest management. Pest Management Science. 67(5): 493-506. DOI: 10.1002/ps.2096.

    Fujii Y., Parvez S. S., Parvez M. M., Ohmae Y. & Iida O. (2004). Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biology and Management. 4(4): 233-241. DOI: 10.1111/j.1445-6664.2004.00124.x.

    Gebreyohannes L., Egigu M. C., Manikandan M. & Sasikumar J. M. (2023). Allelopathic potential of Lantana camara L. leaf extracts and soils invaded by it on the growth performance of Lepidium sativum L. International Journal of Agronomy. 2023: ID 6663686. DOI: 10.1155/2023/6663686.

    Ghassemi-Golezani K., Miri A. & Zare A. (2019). Allelopathic effects of some medicinal plants on germination and seedling growth of Amaranthus retroflexus and Chenopodium album. Allelopathy Journal. 44(2): 175-184. DOI: 10.26651/aj.2019.44.2.1093.

    Ho T. L., Nguyen C. T., Vu D. C., Nguyen T. T., Nguyen V. Q. & Smeda R. J. (2021). Rice by-products reduce seed and seedling survival of Echinochloa crus-galli, Leptochloa chinensis, and Fymbristylis miliacea. Agronomy. 11(4): 776. DOI: 10.3390/agronomy11040776.

    Hoang M. H. & Vo T. N. (2016). Flavonoids and chalconoid isolated from flowers of Cosmos bipinnatus cav. (Asteraceae). Journal of Technical Education Science. 11(Special Issue 2): 48-53.

    Huang Z., Liu C., Xie K. & Chen W. (2013). Application of allelopathy in plant protection in China. Allelopathy Journal. 31(1): 133-145.

    Hussain F. & Gadoon M. A. (2011). Allelopathy and its role in agriculture. Plant Sciences. 6(1): 64-75. DOI: 10.3923/psci.2011.64.75.

    Inderjit & Dakshini K. M. M. (1991). Bioassays for allelopathy: A review. Allelopathy Journal. 4(1): 5-16.

    Jabran K., Mahajan G., Sardana V. & Chauhan B. S. (2015). Allelopathy for weed control in agricultural systems. Crop Protection. 72: 57-65. DOI: 10.1016/j.cropro.2015.02.001.

    Kaur H. & Kaushik S. (2005). Cellular evidence of allelopathic interference of benzoic acid to mustard (Brassica juncea L.) seedling growth. Plant Physiology and Biochemistry. 43(1): 77-81. DOI: 10.1016/j.plaphy.2004.12.003.

    Khanh T. D., Chung I. M., Xuan T. D. & Tawata S. (2005). The exploitation of crop allelopathy in sustainable agricultural production. Journal of Agronomy and Crop Science. 191(3): 172-184. DOI: 10.1111/j.1439-037X.2005.00172.x.

    Kong C. H., Xu X. H., Hu F. & Chen X. (2007). Allelopathy of Ageratum conyzoides and its allelochemicals. Journal of Agricultural and Food Chemistry. 55(16): 6469-6474. DOI: 10.1021/jf070517k.

    Latif S., Chiapusio G. & Weston L. A. (2017). Allelopathy and the role of allelochemicals in plant defense. In: Bécard G. (Ed.). Advances in Botanical Research. Academic Press. DOI: 10.1016/bs.abr.2016.12.001.

    Le Thi H. & Kato-Noguchi H. (2008). Assessment of the allelopathic potential of cucumber plants. Environmental Control in Biology. 46(1): 61-64. DOI: 10.2525/ecb.46.61.

    Li J., Chen L., Chen Q., Miao Y., Peng Z., Huang B., Guo L. & Du H. (2021). Allelopathic effect of Artemisia argyi on the germination and growth of various weeds. Scientific Reports. 11: 4303. DOI: 10.1038/s41598-021-83752-6.

    Lopes A. D., Nunes M. G. I. F., Francisco J. P. & dos Santos E. H. (2022). Potential allelopathic effect of species of the Asteraceae family and its use in agriculture. In: Hufnagel L. & El-Esawi M. A. (Eds.).Vegetation Dynamics, Changing Ecosystems and Human Responsibility. IntechOpen. DOI: 10.5772/intechopen.108709.

    Macías F. A., Mejías F. J. & Molinillo J. M. (2019). Recent advances in allelopathy for weed control: From knowledge to applications. Pest Management Science. 75(9): 2413-2436. DOI: 10.1002/ps.5371.

    Madhavi K., Kiran G., & Mohan G. (2017). Phytochemical screening and allelopathic effect of Cosmos bipinnatus on selected weeds. Journal of Chemical and Pharmaceutical Research. 9(3): 165-171.

    Montull J. M. & Torra J. (2023). Herbicide resistance is increasing in Spain: Concomitant management and prevention. Plants. 12(3): 469. DOI: 10.3390/plants12030469.

    Nguyen N. B. C. & Le T. B. L. (2015). Composition of insect pests and natural enemies in the supplementary flower planting model with bitter melon (Momordica charantia L.). Can Tho University Journal of Science, Part B: Agriculture, Fisheries, and Biotechnology. 36: 37-42 (in Vietnamese).

    Olofsdotter M. (2001). Rice allelopathy—Where are we now? In: Olofsdotter M. (Ed.). Proceedings of the Workshop on Allelopathy in Rice. Manila, Philippines: International Rice Research Institute: 3-6.

    Ortega-Medrano R. J., Ceja-Torres L. F., Vázquez-Sánchez M., Martínez-Ávila G. C. G. & Medina-Medrano J. R. (2023). Characterization of Cosmos sulphureus Cav. (Asteraceae): Phytochemical Screening, Antioxidant Activity and Chromatography Analysis. Plants. 12(4): 896. DOI: 10.3390/plants12040896.

    Scavo A. & Mauromicale G. (2021). Crop Allelopathy for Sustainable Weed Management in Agroecosystems: Knowing the Present with a View to the Future. Agronomy. 11(11): 2104. DOI: 10.3390/agronomy11112104.

    Trang N. T. T., Cuong N. T., Van Vang L. & Le Thi H. (2024). Evaluation of phytotoxic potential in Asteraceae plant extracts for biological control of Echinochloa crus-galli and Echinochloa colona. Plant-Environment Interactions. 5(5): e70009. DOI: 10.1002/pei3.70009.

    Weiszhár Z., Czúcz J., Révész C., Rosivall L., Szebeni J. & Rozsnyay Z. (2012). Complement activation by polyethoxylated pharmaceutical surfactants: Cremophor-EL, Tween-80 and Tween-20. European Journal of Pharmaceutical Sciences. 45(4): 492-498. DOI: 10.1016/j.ejps.2011.09.016.

    Weston L. A. & Duke S. O. (2003). Weed and crop allelopathy. Critical Reviews in Plant Sciences. 22(3-4): 367-389. DOI: 10.1080/713610861.

    Xuan T. D., Elzaawely A. A., Deba F. & Tawata S. (2006). Mimosine in Leucaena as a potent bio-herbicide. Agronomy for Sustainable Development. 26(2): 89-97. DOI: 10.1051/agro:2006001.

    Xuan T. D., Tawata S., Khanh T. D. & Chung I. M. (2005). Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: An overview. Crop Protection. 24(3): 197-206. DOI: 10.1016/j.cropro.2004.08.004.

    Yadav R. & Agarwala M. (2011). Phytochemical analysis of some medicinal plants. Journal of Phytology. 3(12). Retrieved from https://updatepublishing.com/journal/index.php/jp/article/view/2737 on August 12, 2024.

    Zeng R. S., Mallik A. U. & Luo S. M. (2008). Allelopathy in Sustainable Agriculture and Forestry. Springer.