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Abstract 

The paper presents an analytical solution to investigate the free 

vibration of a sandwich plate with an auxetic core (negative Poisson’s 

ratio) and functionally graded face sheets containing porosities 

(PoFGM), based on the four-variable higher-order shear deformation 

theory (HSDT-4). The plate is assumed to be supported by Winkler, 

Pasternak, or Kerr elastic foundations. The governing equations were 

derived using Hamilton’s principle and were solved analytically 

using the Navier solution for a rectangular plate with simply 

supported edges. The results were validated through comparisons 

with previously published studies, demonstrating the accuracy and 

reliability of the proposed approach. In addition, the effects of 

material properties (porosity distribution patterns, porosity volume 

fraction), geometric parameters of the auxetic core unit cell, the 

geometric dimensions of the plate, and the elastic foundation on the 

vibration characteristics were thoroughly analyzed. 

Keywords  

Free vibration analysis, sandwich plates, FGM, porosity, auxetic, 

elastic foundations 

Introduction 

Functionally graded materials (FGMs), as a new class of 

materials composed of two or more components, exhibit smooth and 

continuous variation in properties along defined directions. With 

their outstanding advantages, FGMs enable optimal mechanical 

design and effectively address the delamination issues commonly 

encountered in traditional composite materials. FGMs can be 

fabricated from a variety of materials, primarily metals and ceramics. 

Ceramics  contribute  heat  resistance, while metals enhance strength  
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and ductility, making FGMs particularly suitable 

for components operating in high-temperature 

environments (Reddy, 2000; Zenkour, 2006; 

Zhao & Liew, 2009). 

Sandwich plates made from functionally 

graded materials have evolved into advanced 

structural systems due to their ability to combine 

diverse material characteristics within a single 

configuration. These plates are often engineered 

with components that vary through the thickness, 

enhancing properties such as strength-to-weight 

ratio, thermal resistance, and impact resistance. 

Consequently, they are widely applied in 

demanding engineering sectors, including 

automotive, marine, nuclear, aviation, and 

aerospace industries. To better understand their 

behavior, researchers have conducted numerous 

studies using different shear deformation 

theories. For example, Thai et al. (2014) 

proposed an improved first-order plate theory to 

analyze the bending, stability, and free vibration 

characteristics of FGM-based sandwich plates. 

Zenkour (2005a; 2005b) introduced a 

generalized higher-order shear deformation 

theory (HSDT) to investigate the mechanical 

behavior of functionally graded plates. Houari et 

al. (2013) applied a modified HSDT to study the 

thermoelastic bending of FGM sandwich plates, 

while Alibeigloo & Alizadeh (2015) used three-

dimensional elasticity theory to examine their 

static and dynamic responses. 

Modern advanced materials such as 

composite materials, FGMs, porous materials, 

and piezoelectric materials- typically exhibit 

positive Poisson’s ratios. This means they 

contract laterally when subjected to tensile forces 

and expand laterally under compressive forces. 

In contrast, auxetic materials (Alderson & Evans, 

1995), which are a class of advanced materials 

with negative Poisson’s ratios, have attracted 

considerable attention due to their unique and 

superior properties, including low weight, high 

stiffness-to-weight ratio, excellent sound and 

thermal insulation, and outstanding energy 

absorption capabilities. Sandwich plates with 

auxetic cores show significant potential for 

military applications, such as forming mats that 

enable military vehicles and armored personnel 

carriers to traverse soft or swampy terrain. 

Moreover, such structures can serve as protective 

armor, reducing overall weight while improving 

acoustic insulation, thermal resistance, and 

impact mitigation against collisions or shock 

waves from explosions (Ghazwani et al., 2024). 

Tran et al. (2020) investigated the dynamic 

response of sandwich plates with auxetic 

honeycomb cores resting on elastic foundations 

under moving loads. Imbalzano et al. (2016) 

analyzed the dynamic behavior of auxetic 

composite plates under explosive loading. Quoc 

et al. (2023) explored the free vibration and 

nonlinear behavior of composite sandwich plates 

with auxetic honeycomb cores and piezoelectric 

face sheets. Nguyen et al. (2021) conducted an 

in-depth study of sandwich plates with auxetic 

cores subjected to blast loads. Comprehensive 

insights into auxetic structural analysis, 

including structural types, materials, analytical 

methods, and manufacturing techniques, are 

provided in the review by Bohara et al. (2023). 

In the manufacturing of FGMs using 
techniques such as layered infiltration and 
sintering, porosity often arises within the 
material structure, significantly affecting its 
mechanical properties. Numerous studies have 
been conducted to evaluate the effects of 
porosity distribution and porosity ratio on the 
mechanical behavior of porous FGM (Po-FGM) 
plate structures. Aït Atmane et al. (2017) 
investigated the influence of porosity on the 
mechanical response of Po-FGM beams resting 
on elastic foundations. Yousfi et al. (2018) 
analyzed the impact of porosity on the vibration 
characteristics of FGM plates by applying shear 
deformation theory with sinusoidal 
displacement functions and Navier-type 
solutions. Merdaci et al. (2021) examined the 
natural vibration behavior of Po-FGM plates 
using a higher-order shear deformation theory 
in conjunction with the Navier method. Le 
Thanh Hai et al. (2024) studied the natural 
vibration and dynamic response of Po-FGM 
sandwich plates placed on a Kerr-type elastic 
foundation using a simplified first-order shear 
deformation theory. Liang & Wang (2020) 
proposed a quasi-3D trigonometric shear 
deformation theory to investigate wave 
propagation in Po-FGM sandwich plates resting 
on a viscoelastic foundation. 
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Many practical structures such as pipelines, 
railways, and pontoon bridges are constructed on 
elastic foundations, making the study of FGM 
plate structures on such foundations both 
important and highly relevant. The three 
commonly used elastic foundation models are the 
Winkler, Pasternak, and Kerr models. The 
Winkler model (Winkler, 1867) is the simplest, 
representing the foundation as a series of 
independent springs, but it fails to capture the 
continuity of the foundation. To address this 
limitation, the Pasternak model (Pasternak, 
1954) introduced a shear interaction parameter. 
Building on both, the Kerr model (1965; 1984) 
further enhanced the accuracy by incorporating 
layered spring interactions, offering a more 
realistic representation of elastic foundations. 
Kumar & Harsha (2022) applied the First-Order 
Shear Deformation Theory (FSDT) to investigate 
the static behavior of piezoelectric Po-FGM 
sandwich plates placed on Winkler, Pasternak, 
and Kerr foundations under mechanical, thermal, 
and electrical loading. Li et al. (2021) used the 
Higher-Order Shear Deformation Theory 
(HSDT) to study the free vibration of FGM plates 
on these foundation models. Shahsavari et al. 
(2018) explored the free vibration of Po-FGM 
plates using three-dimensional elasticity theory 
with a hyperbolic displacement function, 
considering all three foundation types. Recent 
studies (Vu Van Tham et al., 2024; Vu Van 
Tham, 2025) further demonstrate the increasing 
use of the Kerr foundation model in vibration 
analyses of fundamental structural elements such 
as beams, plates, and shells. 

As mentioned above, there have been no 
prior studies on the free vibration behavior of 
SAFGP (porous Sandwich Auxetic-FGM plates) 
structures resting on Winkler, Pasternak, or Kerr 
foundations. Therefore, it is necessary to fill this 
research gap and contribute to the development 
of this field. Beyond its theoretical significance, 
investigating the vibration characteristics of 
SAFGP plates on elastic foundations opens up 
numerous potential applications in engineering 
structures, especially as the materials used in 
these plates are gaining increased attention. To 
address this deficit, this paper proposes an 
analytical model based on the Higher-Order 
Shear Deformation Theory (HSDT-4) to study 
the free vibration of SAFGP plates on Winkler, 
Pasternak, and Kerr foundations. The results 
obtained are validated by comparing them with 
existing literature to confirm the reliability of the 
proposed model. Building on this foundation, 
this study further explores the effects of material 
properties, the porosity distribution and 
coefficient, auxetic unit cell geometry, plate 
dimensions, and elastic foundation parameters on 
the fundamental frequencies of SAFGP plates. 

Methods 

SAFGP plates resting on 

Winkler/Pasternak/Kerr elastic foundation 

In this study, a sandwich plate with two Po-
FGM face layers and an auxetic honeycomb core 
layer resting on a Winkler/Pasternak/Kerr elastic 
foundation was considered. The plate dimensions 
are illustrated in Figure 1.  

 

Figure 1. Schematic of sandwich plate with honeycomb core and porous FGM face sheets resting on Kerr foundation  
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The dimension of SAFGP plate is ab and the total thickness is h = hc+2hf where hc and hf are the 

thickness of the core layer and two face layers as shown in Figure 1. The PoFGM material consists of 

ceramic and metal. The effective properties P(L) of each Lth layer (L = 1, 2, 3) are assumed to vary smoothly 

along the thickness of the plate according to a power law as in the followings: 

   ( ) ( ) ( )0( )
2

    N N N

m c m c c mP z P P P V P P



 

(1) 

where N represents the number of layers of the plate; 0 is the porosity coefficient; Pm and Pc are 

the material properties of the metal and ceramic, respectively; 
( )L

cV  is the volume fraction of the 

ceramic and ( )L  is a step function. 

The ceramic volume fraction 
( )L

cV  and step function ( )L  for three types of sandwich plates 

SPoFGM-I, SPoFGM-II are defined as follows (Li et al., 2008):

Layer 1 (PoFGM at the bottom of the plate): 1

2 1

( )

p

c

z z
V z

z z

 
  

 
      with  1 2,z z z  (2) 

Layer 2 (auxetic core layer): calculated according to Equation (7)     and  2 3,z z z  (3) 

Layer 3 (PoFGM at the top of the plate):  4

3 4

( )

p

c

z z
V z

z z

 
  
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           with  3 4,z z z  (4) 

Uniform porosity distribution type (FGM-I): 

(1) (3) 1    (5) 

Non-uniform porosity distribution type (FGM-II): 

1 0 3 2(1) (3)

1 0 3 2

2 ( ) 2 ( )
1 ;  1 .
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 
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 (6) 

For the auxetic honeycomb core, the important geometrical parameters of the structural unit cell 

are determined and illustrated in Figure 1(c). Equation (7) describes the effective properties of the 

structure, in which the geometrical parameters d, l, t, θ are defined as the horizontal side length, the 

inclined side length, the thickness of each characteristic element, and the inclined angle, respectively 

(Tran et al., 2020). 
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(7) 
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Governing equations 

To analyze the natural vibration of the SAFGP plate placed on elastic foundation, we utilized the 

HSDT-4 theory. The displacement field was defined such as Quoc et al. (2019):  

   
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0

0

( , , ) ( , , )
( , , )
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 

 (8) 

in which wb and ws were the deflection components due to bending and due to shear, respectively.; 

u₀, v₀ were the displacements at the middle surface in the direction x, y; f(z) was the shear stress 

distribution function along the plate thickness. Following Quoc et al. (2019), the function 
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 satisfies the condition that the transverse shear stress at the top and bottom 

of the plate is zero. 

The strain field was derived from the displacement field as below: 
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The stress-strain relationship followed the Hooke's law, which is defined by: 
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in which k = b; c; t represented the bottom, core and top layers of the sandwich plate, respectively. 

For the two PoFGM surface layers: 
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For the auxetic core layer: 
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Next, we substituted the strain components in Eq. (10) into Eq. (11) and then integrated along the 

plate thickness to obtain the relationship between the internal force resultants and strains:  
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The HSDST-4 equations of motion of the SAFGP plate placed on an elastic foundation were 

obtained using Hamilton's principle Quoc et al. (2019): 
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in which 
2 2 2x y        was the Laplace operator in rectangular Cartesian coordinates. 
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where , ,c t b

FG FG    were the mass densities of the auxetic core layer, the top PoFGM layer and 

the bottom PoFGM layer, respectively. 

Substituting the internal force resultants in terms of  displacements in Eq. (14) into Eq. (16), we 

obtained the system of equations of motion of the SAFGP plate placed on the Winkler/Pasternak/Kerr 

elastic foundation in terms of displacements: 
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(18) 

where fe was the foundation reaction, determined by the following formula (Li et al., 2021): 

 we b sf k w w   for Winkler foundation; 

   2

we b s p b sf k w w k w w      for Pasternak foundation; 

          2

l l le u u b s s u u b sf k k k k w w k k k k w w        for Kerr foundation. 

(19) 

in which kw kp were the bending and shear stiffness coefficients of the Winkler-Pasternak 

foundation; kl, ks, ku was the triplet of the corresponding Kerr stiffness coefficients. 
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Navier solution 

In this study, the free vibration of a SAFGP plate placed on a Winkler/Pasternak/Kerr elastic 

foundation was analyzed using the Navier solution with simply supported boundary condition (SSSS), 

expressed as follows: 

0v = w w 0 b s x xN M    ,  at x = 0, a 

0u = w w 0 b s y yN M    ,  at y = 0, b 
(20) 

The displacement components were assumed to be in the form of double trigonometric series, 

satisfying the boundary conditions shown in Eq. (20):  
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1 1
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1 1
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 (21) 

where / ,  /m a n b     ,  was the angular fundamental frequency (rad/s) and the unknown 

coefficients to be determined were    ,  ,  ,  
T

mn mn bmn smnX u v w w . 

Substituting Eq. (21) into Eq. (18) and then perform mathematical manipulations, we obtained the 

following equation: 

       2

4 4 4 4
0K M X

 
   (22) 

with coefficients ijk  and ijm  of the structural stiffness matrix  
4 4

K


 and mass matrix  
4 4

M


 are 

described below: 
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in which for Winkler foundation: 1 w 2;  0K k K  ; for Pasternak foundation: 

1 w 2;  pK k K k  ; for Kerr foundation:        1 l l 2 l; .u u s u uK k k k k K k k k k     

(23) 

The fundamental natural frequency of the SAFGP plate placed on an elastic foundation was 

determined by solving the eigenvalue equation    2

4 4 4 4
0K M

 
  . The solution of this equation 
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was the natural frequency mn  corresponding to 

the vibration mode (m, n). The fundamental 
natural frequency was then determined by:   = 

min mn . 

Methodology Flowchart 

To clarify the analytical procedure, a 
methodological flowchart is presented to 
illustrate the sequential steps of the study 
(Figure 2). The flow starts with the formulation 
of displacement fields using the four-variable 
HSDT theory, followed by the derivation of 
strain-displacement relations and stress-strain 
laws. Subsequently, the internal force resultants 
are obtained and incorporated into Hamilton’s 
principle to establish the governing equations. 
The system of equations is then solved using the 
Navier method for simply supported boundary 

conditions. Finally, the eigenvalue problem is 
formulated and solved to obtain the natural 
frequencies. This structured approach ensures 
transparency and reproducibility in the vibration 
analysis of SAFGP plates. 

Results and Discussion 

Verification example 

Two comparison examples were performed 

to verify the accuracy of the present model. The 

first comparison was carried out on an auxetic 

honeycomb core sandwich plate with isotropic 

surface layer (E= 69 GPa,  = 0.33,  = 2700 kg 

m-3). The comparison was done with the results 

of Tran et al. (2020) using a finite element model 

based on first-order shear deformation theory, as 

shown in Table 1. 

 
Figure 2. Methodology flowchart for free vibration analysis of SAFGP Plates 
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Table 1. Comparison of fundamental frequency of sandwich plates with isotropic surface layer, auxetic core on Pasternak elastic 

foundation (h = 0.1m; a = b = 20h; 3= 0.01385, K1 = 0.1 GPa/m; K2 = 0.05 GPa.m) 

 

1 = 0.5 1 = 2 1 = 4 

Present Tran et al. (2020) Present Tran et al. (2020) Present Tran et al. (2020) 

 = 10o 276.5425 277.6223 280.3869 281.5118 280.8357 281.9645 

 = 35o 317.7951 319.2125 279.5374 280.6563 280.4536 281.5723 

 = 55o 292.4153 293.6156 277.8031 278.9102 279.6449 280.7500 

 = 80o 306.3131 307.5683 266.8752 267.9027 274.0952 275.1136 

The second comparison was carried out for 

porous FGM (Al/Al2O3) sandwich plates. Table 

2 compares calculated dimensionless frequencies 
2

0 0/a h E   (
-3

0 0 1 GPa;  1 kg mE   ) 

with those of Daikh & Zenkour (2019) who 
employed a five-unknown displacement high-
order plate theory (TSDT) and analytical 
solution. The results showed that, with different 

values of porosity coefficients, porosity 
distribution patterns, and core-to-face layers 
thickness ratios, the difference between the 

obtained  were  negligible. 

Based on the two verification examples 
above, it can be concluded that the analytical 
model and computational program developed in 

this study were reliable. On that basis, parametric 
study was then carried out in the next section. 

Parametric study 

In this section, the free vibration analysis of 

a rectangular SAFGP plate (Figure 1) resting on 
a Winkler/Pasternak/Kerr elastic foundation is 
presented. The auxetic core material was made of 

isotropic material with the following parameters: 
elastic modulus E = 70 GPa, Poisson's ratio ν = 

0.3 and density ρ = 2702 kg m-³. The surface layer 
was made of FGM (Al/Al₂O₃) with the following 

mechanical properties: Al₂O₃: cE = 380 GPa ; c = 

3800 kg m-3 ;  c = 0.3 and Al: mE = 70 Gpa ; m

= 2702 kg m-3 ;  m = 0.3. Three types of SAFGP 

plates were considered: SAFGP-0 plates were made 
up of auxetic core and perfect FGM face sheets 

(without porosity, 0=0); SAFGP-I plates were 

made up of auxetic core and FGM-I face sheets. 
SAFGP-II plates were made up of auxetic core and 
FGM-II face sheets. 

Effect of elastic foundation 

Table 3 reveals a key trend: the fundamental 
frequency of all three SAFGP plate types was 
consistently higher when placed on Pasternak or 

Kerr foundations as compared to the Winkler 
foundation. Mechanically, this indicated that the 
Winkler foundation exhibited significantly lower 
overall stiffness than the other two models. This 

difference arose because the Pasternak and Kerr 
foundations incorporated shear stiffness (kₚ), 
which enhanced system rigidity. Notably, when 

the lower layer’s bending stiffness and shear 

stiffness parameters were held constant, the 
plate’s fundamental frequency on the Kerr 
foundation remained slightly lower than that on 

the Pasternak foundation. 

From a mechanical perspective, this 

difference stemmed from the Kerr foundation 

model's inclusion of an additional elastic layer 

(kₗ) in direct contact with the plate. This sub-layer 

behaved like a spring, effectively reducing the 

overall bending stiffness of the plate-foundation 

system compared to simpler foundation models. 

Furthermore, among the two types of plates with 

porous functionally graded surface layers, the 

SAFGP-II plate consistently exhibited a higher 

fundamental frequency than the SAFGP-I plate. 

Influence of surface layer material properties 

Table 4 and Figure 3 show the variation of 

the fundamental natural frequency for the 

SAFGP plate with the change of the volume 

fraction index p and the porosity coefficient 0, 

investigated for both types of surface layer pore 

distributions, FGM-I and FGM-II. The results 

show that the frequency tended to decrease as the
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Table 2. Comparison of dimensionless fundamental natural frequencies of porous FGM sandwich plates (p = 2; a/b = 1; a/h =10) 

Distribution type 0 Model 1-0-1 1-1-1 1-2-1 2-1-2 

PB-I 

0 Daikh & Zenkour (2019) 1.06155 1.18847 1.30244 1.12248 

 Present 1.06215 1.18910 1.30351 1.12298 

0.1 T Daikh & Zenkour (2019) 0.98258 1.12071 1.24933 1.04712 

 Present 0.99178 1.13005 1.25790 1.05662 

0.2 Daikh & Zenkour (2019) 0.87867 1.04201 1.19156 0.95491 

 Present 0.89387 1.05744 1.20512 0.97081 

PB-II 

0.1 Daikh & Zenkour (2019) 1.03235 1.15768 1.27723 1.09008 

 Present 1.03751 1.16294 1.28221 1.09542 

0.2 Daikh& Zenkour (2019) 1.00033 1.12524 1.25140 1.05528 

 Present 1.00918 1.13416 1.25939 1.06451 

Table 3. Fundamental natural frequency of SAFGP sandwich plates on elastic foundation (h = 0.1m; a = b = 20h; 0 = 0.1; p = 5; 1 

= 2; 3 = 0.01385; 1-2-1) 

Foundation Foundation coefficients  SAFGP-0 SAFGP-I SAFGP-II 

Winkler kw = 0.1 GPa/m 

10 223.037 218.429 221.042 

30 222.438 217.770 220.414 

45 221.540 216.782 219.473 

60 219.718 214.782 217.564 

Pasternak kw = 0.1 GPa/m  ks = 0.05 GPa.m 

10 303.605 308.941 306.244 

30 302.787 308.004 305.370 

45 301.559 306.601 304.060 

60 299.068 303.759 301.403 

Kerr ku = k l = 0.1 GPa/m ks = 0.05 GPa.m 

10 249.725 248.808 249.437 

30 249.053 248.055 248.727 

45 248.046 246.928 247.662 

60 246.002 244.645 245.504 

Table 4. Fundamental frequency of SAFGP plates as a function of p and 0 (h = 0.1m; a = b = 20h; 0 = 0.1; 1 = 1; 3 = 0.01385; 
1-2-1; ku = kl = ks = 0) 

Porosity 
distribution 

0 
p 

0.2 1 2 5 10 

FGM-I 

0 323.334 285.687 266.291 248.589 241.909 

0.05 326.089 287.100 266.795 248.096 240.988 

0.1 329.085 288.656 267.354 247.535 239.939 

0.15 332.353 290.380 267.976 246.891 238.733 

0.2 335.934 292.299 268.672 246.143 237.330 

FGM-II 

0 323.334 285.687 266.291 248.589 241.909 

0.05 324.724 286.429 266.596 248.418 241.535 

0.1 326.172 287.206 266.917 248.236 241.136 

0.15 327.681 288.022 267.255 248.041 240.711 

0.2 329.256 288.879 267.611 247.833 240.256 
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a) SAFGP-I b) SAFGP-II 

Figure 3. Variation of dimensionless fundamental frequency of SAFGP plates as a function of p (h = 0.1m; a = b = 20h; 0 = 0.1;  = 

10; 1 = 1; 3 = 0.01385; 1-2-1; ku = kl = ks=0) 

p index increased. This phenomenon could be 

explained by the change in material composition: 

as p increased, the metal (Al) ratio in the FGM 

material increasedwhile the ceramic (Al2O3) 

component decreased. Since the elastic modulus 

of metal (Em = 70 GPa) was much lower than that 

of ceramic (Ec = 380 GPa), this change in 

composition led to a decrease in the overall 

stiffness of the plate and consequently a decrease 

in the frequency. On the other hand, the results 

from the graph also demonstrate that the porosity 

coefficient 0 showed a clear influence on the 

frequency. Specifically, the frequency decreased 

significantly when 0 increased. In terms of 

mechanical standpoint, the increase in porosity 

changed the mechanical properties of the 

material, especially reducing the effective 

modulus of elasticity, thereby leading to a 

decrease in the overall stiffness of the plate. 

Influence of the properties of auxetic core material 

In this section, the influence of the geometric 

parameters of the auxetic unit cell on the 

fundamental natural frequency of the SAFGP 

plate were analyzed in detail. First, Figure 4 

shows the influence of the inclined angle  on the 

fundamental frequency of the plate (1 changes 

and 3= 0.01385). For the case of 1 = 1, the 

fundamental frequency decreased significantly as 

the angle  increased, and according to the 

geometrical characteristics of the auxetic unit cell, 

the value of  cannot exceed 30° when 1 = 1. For 

the values of 1 = 2, 3, and 5, as  increased, the 

fundamental frequency of the plate continued to 

decrease in a similar trend, and the rate of decrease 

became more obvious when  ≥ 30°. 

In order to further analyze the influence of 

the geometric parameters of the auxetic unit cell, 

Figure 5 shows the impact of the two parameters 

1 and 3 on the fundamental natural frequency 

of the SAFGP plate. The results demonstrate that 

when the parameter 3 increased, the 

fundamental frequency tended to decrease, while 

increasing 1 increased the frequency, which 

means improving the stiffness of the plate. Thus, 

the two parameters 1 and 3 affected the 

stiffness of the structure in opposite directions, 

thereby providing an important basis for 

optimizing the design of SAFGP plates in 

practical applications. 

Influence of sandwich plate structure 

Table 5 presents the results of the 

fundamental frequency analysis of two types of 

SAFGP-I and SAFGP-II plates placed on Kerr 

elastic foundation with five face-to-core 

thickness ratios (1-1-1, 1-2-1, 1-3-1, 1-4-1 and 

2-1-2). The results show three main trends: the 

fundamental frequency increased with 

increasing auxetic core layer thickness; the 

fundamental frequency decreased with 

increasing 0 coefficient and inclined angle ; 

SAFGP plates with FGM-II surface layer 

always gave higher frequencies than FGM-I. 

Notably, these trends are completely consistent 

with the results obtained for the case of plates 
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not placed on Kerr elastic foundation, 

demonstrating that the influence of material 

parameters (0, ) and structure (layer 

thickness ratio, porosity distribution pattern) 

on the vibration behavior is similar in both 

cases with and without elastic foundation.  

Effect of plate’s geometric parameters 

Figure 6 illustrates the effect of the side-to-

thichkenss ratio a/h and aspect ratio b/a on the 

dimensionless fundamental natural frequency of 

the SPoFGM sandwich plates, where a is fixed 

as  1m,  while  h  and  b  are  varied.  The  results 

show that as the ratio b/a increased, the 

frequencies  of  both  SAFGP-I  and SAFGP-II 

plates decreased. This was consistent with the 

trend because as the ratio b/a increased, the 

geometry of the plate became more elongated 

in the transverse direction, allowing greater 

deformation along the wider side. This change 

reduced the effective stiffness-to-mass ratio of 

the plate, resulting in a decrease in the 

dimensionless frequency. On the other hand, 

when keeping a = 1m fixed and increasing the 

ratio a/h (i.e. decreasing the thickness h), the 

frequency of the plate also tended to decrease. 

The reason was that the decrease in thickness 

reduced the stiffness of the plate, leading to a 

lower frequency.  

Limitations of the Study 

While the current analytical model provided 

valuable insights into the free vibration 

characteristics   of   SAFGP   plates   resting   on 

Table 5. Fundamental frequency of SAFGP plates as a function of thickness ratio (h = 0.1m; a = b = 20h; 0 = 0.1; p = 5; 1 = 2; 

3 =  0.01385; ku = kl = 0.1 GPa/m; ks = 0.05 GPa.m) 

Porosity distribution 0  1-1-1 1-2-1 1-3-1 1-4-1 2-1-2 

FGM-I 

0.1 

10 215.557 248.808 273.677 293.645 194.083 

30 215.227 248.055 272.450 291.911 193.933 

45 214.729 246.928 270.624 289.342 193.706 

60 213.710 244.645 266.960 284.241 193.240 

FGM-II 

10 217.033 249.437 273.581 292.901 196.063 

30 216.720 248.727 272.427 291.272 195.921 

45 216.248 247.662 270.705 288.855 195.705 

60 215.282 245.504 267.248 284.044 195.262 

FGM-I 

0.2 

10 212.622 247.590 274.076 295.531 190.323 

30 212.249 246.735 272.674 293.541 190.155 

45 211.688 245.455 270.591 290.603 189.900 

60 210.541 242.870 266.431 284.799 189.378 

FGM-II 

10 216.179 249.107 273.849 293.755 195.082 

30 215.847 248.354 272.622 292.021 194.931 

45 215.348 247.225 270.794 289.451 194.703 

60 214.326 244.939 267.129 284.347 194.235 
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(a) SAFGP-I (b) SAFGP-II 

Figure 4. Variation of fundamental frequency of SAFGP plates as a function of inclined angle  (h = 0.1m; a = b = 20h; 0 = 0.1; p = 1; 

3 = 0.01385; 1-2-1) 

 

  
a) SAFGP-I b) SAFGP-II 

Figure 5. Variation of fundamental frequency as a function of 1 and 3 (h = 0.1m; a = b = 20h; 0 = 0.1; p = 1;  = 10; 1-2-1) 

 

  
a) SAFGP-I b) SAFGP-II 

Figure 6. Variation of dimensionless fundamental frequency of SAFGP plates as a function of a/h  and b/a  ratios (a = 1m; 0 = 0.1; 

p = 5;  = 10; 1 = 2; 3 = 0.01385; ku = kl = 0.1 GPa/m; ks = 0.05 GPa.m, 1-2-1)



Dao Cong Binh et al. (2025) 

 

https://vjas.vnua.edu.vn/                                                                                                                                                                                                                    2507 

 

various elastic foundations, some limitations 

remain. First, the model assumed ideal boundary 

conditions (simply supported), which may differ 

from practical applications where boundary 

constraints are more complex. Second, the analysis 

neglected damping effects, which are important in 

dynamic responses. Third, temperature-

dependent material properties were not 

considered, even though they could significantly 

influence the behavior of FGM-based structures. 

Future research should address these aspects to 

further enhance the applicability of the proposed 

model in real-world engineering systems. 

Conclusions  

The paper presents a theoretical study of the 

free vibration of porous sandwich plates with 

auxetic core and FGM surface layer placed on 

Winkler/Pasternak/Kerr elastic foundation, using 

the four-unknown displacement high-order shear 

deformation theory. Two types of porosity 

distribution in the surface layer were 

investigated. The verification of fundamental 

frequency with available literature confirms the 

reliability of the proposed theoretical model. The 

study has drawn some important conclusions: 

(i) The porosity distribution strongly affects 

the vibrational characteristics of the plate, which 

is shown by the difference in frequency between 

the two distribution types FGM-I and FGM-II. 

(ii) The geometric parameters of the auxetic 

core (1, 3, θ) together with the core thickness 

affect the fundamental frequency: the frequency 

decreases when 3 and the inclined angle θ 

increase, conversely, the frequency increases 

when 1 and the core thickness increase. 

(iii) The research results show that the 

presence of elastic foundation has a significant 

influence on the fundamental frequency. 

(iv) The geometric ratios (b/a and a/h) 

strongly influence the frequency: as these ratios 

increase, the overall stiffness of the structure 

decreases, leading to a decrease in the frequency. 

These findings provide an important 

scientific basis for the design and optimization of 

auxetic-FGM sandwich structures in engineering 

applications, especially in dynamically loaded 

systems. Furthermore, since no available FEM 

software currently supports this type of complex 

sandwich structure with auxetic core and porous 

FGM layers on Winkler/Pasternak/Kerr 

foundations, the present results serve as valuable 

benchmark data for future analytical and 

numerical developments. 
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