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Abstract 

In this paper, a novel algorithm is proposed for an Efficient Fault 

Diagnosis Method (EFDM) for electrical equipment in real time. A 

combined optical and thermal image processing system is employed 

to detect thermal anomalies in electrical components in real time. A 

video camera is initially used to monitor and identify the electrical 

components, while an infrared camera, aligned with the same 

viewpoint, is used to capture thermal images of the equipment. The 

EFDM is then applied to identify and locate faults in electrical 

components. Numerical results indicate that the proposed algorithm 

achieves higher accuracy in detecting thermal anomalies compared 

to existing methods. Evaluation across 300 scenarios shows that the 

proposed method achieves 97.57% accuracy in localizing abnormal 

electrical components and 95.30% accuracy in estimating their 

surface temperatures. These results demonstrate that the proposed 

thermal anomaly detection algorithm is effective for electrical power 

monitoring applications. 
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Introduction 

It is known that the temperature of working electrical 

components raise due to Joule heating as flowing equation: 

2Q I Rt  (1(1) 

where, I is the electrical current flows through a resistivity 

components having resistance R. Therefore, the main reasons to 

increase the heat of these electrical components are high current flow 

(overloading) or increased resistance due to factors such as poor 

connections, load imbalance, or wiring errors (Fatima et al., 2025). 

Overheating in these components can result in failure or damage to 

the power distribution system (Market et al., 2025). Consequently, a  
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key challenge in modern electrical monitoring 
systems is the real-time detection of abnormal 
electrical components (Ahmed et al., 2015; Baba 
et al., 2022; Balakrishnan et al., 2022; Huda & 
Taib, 2013; Amit et al., 2024).  

Traditional methods detect faults mainly 
under high load and with clear line-of-sight 
thermal imaging (McIntosh & Huff, 2016). This 
study overcomes the limitation of relying solely 
on surface temperature by integrating infrared 
thermography with structured risk assessment—
considering failure modes, stressors, and risk 
severity. The proposed framework enhances 
maintenance decisions and safety, offering better 
detection of latent faults. However, it requires 
contextual data and cannot capture internal 
contact temperatures. 

This method distinguishes itself by 
incorporating thermal data into a comprehensive 
diagnostic and predictive maintenance 
framework, rather than relying solely on 
radiometric values. Nonetheless, its effectiveness 
is constrained by thermal contrast dependence, 
lack of temporal dynamics, and sensitivity to 
environmental noise—factors that may cause 
false hotspot detection.  

Elevated temperatures in electrical 
components can degrade power system 
reliability. Infrared thermography, as noted by 
Shariff et al. (2019), is a key technique for early 
fault diagnosis through detection of thermal 
anomalies.According to Kregg (2004), infrared 
thermography (IR) was applied as a preventive 
maintenance tool to monitor equipment integrity 
in substations. By detecting thermal anomalies, 
IR enabled early fault identification in 
components like transformers and circuit 
breakers, outperforming traditional methods 
such as DGA, ultrasonic, and visual 
inspections—detecting over 50% of issues. 
However, IR requires complementary tests for 
accurate diagnosis and maintenance planning. Its 
key roles in power system monitoring are 
outlined below. 

Early fault detection of electrical equipment 

Infrared thermography is recognized as an 
effective non-destructive technique for 
monitoring electrical asset temperatures 
(Kornkanok et al., 2024). Jaffery & Dubey 
(2014) proposed a novel method analyzing 
hotspot locations and temperature change rates 

for early fault detection. Their systems—
NIOLVIS and NIRTVMS—demonstrated non-
invasive, accurate, and reliable performance, 
outperforming conventional monitoring 
approaches. To enhance fault diagnosis in 
electrical components, various intelligent 
systems have been developed (Zou & Huang, 
2015; Jadin & Taib, 2012). These systems 
typically follow four steps: (i) infrared image 
acquisition, (ii) region of interest (ROI) 
identification, (iii) feature extraction, and (iv) 
condition classification of electrical equipment. 

Fire prevention  

On operating conditions, the temperature of 
the electrical equipment depends on many 
influencing factors such as over-voltage, high 
current, unbalance loading, poor connections or 
cracks in insulation, etc (Coutin et al., 2012). The 
overheating of these electrical components may 
cause malfunctions or even fires to break out. It 
is important for early prevention temperature 
monitoring. Therefore, many researchers try to 
detect and early revent thermal abnormalities in 
electrical components early on based on infrared 
thermography (Huda & Taib, 2013, 
Bagavathiappan et al., 2013, Xia, et al., 2021). 
Huda & Taib (2013) employed a multilayer 
perceptron (MLP) neural network with statistical 
features to assess thermal conditions of electrical 
equipment. A component was classified as 
defective if its maximum temperature exceeded 
the reference value by more than 5 °C. Compared 
to discriminant analysis, the MLP achieved 
higher accuracy at 82.4%. 

Energy saving and prolonging the lifetime  

Overheating significantly shortens the 
lifespan of electrical components, making early 

thermal detection via infrared thermography an 

effective preventive measure. Sedighi et al. 
(2020) estimated the lifetime of distribution 
transformers by extracting body temperature 
from infrared images. The results showed high 

consistency with oil test-based estimations, with 
a lifetime prediction error below 10%. 

To address existing limitations, this study 
introduces a spatial–temporal modeling 
algorithm for infrared-based fault diagnosis in 
residential electrical systems. By analyzing 
infrared image sequences, the method captures 
both spatial and temporal pixel features, reducing 
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false hotspot detection and improving diagnostic 
accuracy under real-world conditions. The 
approach enhances the robustness and early-
warning capability of thermal monitoring 
systems by bridging static image analysis with 
dynamic modeling. Integrating image processing 
and machine learning, the study advances the 
development of intelligent electrical monitoring 
solutions. The main contributions of this study 
are: (i) A novel Optimal Threshold Segmentation 
(OTS) algorithm that improves the classical Otsu 
method by iteratively minimizing within-class 
variance, effectively addressing over-
segmentation in noisy, low-contrast thermal 
images; (ii) A spatial–temporal modeling 
technique for analyzing infrared image 
sequences to detect dynamic hotspot behavior 
and reduce false detections from ambient or 
reflected radiation; (iii) A real-time intelligent 
fault detection framework integrating 
segmentation, thermal feature extraction, and 
temporal analysis to classify thermal states into 
three priority levels with maintenance 
recommendations; and (iv) Experimental 
validation on 300 real infrared images, achieving 
97.57% segmentation precision and 95.3% 
temperature estimation accuracy—
outperforming conventional Otsu-based methods 
and confirming applicability in smart power 
monitoring systems. 

Materials and Methods 

The block diagram of the proposed method 
for electrical equipment defect detection is 
illustrated in Figure 1. There are 3 stages in total: 
Image processing, temperature segmentation, 
and image feature analysis. The details of these 
stages are described in this section. 

Otsu’s threshold algorithm  

Let us assume that a given infrared image 

which needs to be segmented the high-

temperature electrical components and the 

ground regions has L grey levels. Let 

 , 1,...,in i L  denote the number of pixels at 

level, and then the total number of pixels of the 

given infrared image is MxN.   iIt is computed in 

equation (2). 

1

x
L

i

i

n M N


  (2) 

where M is the width and N is the height of 

the given infrared image, respectively. We 

assume that the grey level histogram of the given 

infrared image is normalized. The probability 

distribution is computed in equation (3). 

x

i
i

n
p

M N
  (3) 

where 

1

0 1

1

i

L

i

i

p

p


 


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


 
(4) 

Let ( , )I x y denote the grey value of a pixel 

at location  ( , ), 0 ,0x y x M y N     and T 

denotes the threshold value of the Otsu’s method 

(Ostu,1979)). The binary segmentation ( , )x y  

of the given infrared image then is obtained by 

comparing the grey value of each pixel with this 

threshold T , and it is split into two classes 

namely 0 1, .C C 1C denotes the class, which 

includes all the pixels having a grey value higher 

than   T.   These   pixels   belong   to   grey  levels

 

 

Figure 1. Block diagram of the proposed FEDM method 
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 1, 2,...,T T L  . While 1C  denotes the class, 

which includes all the pixels having a grey value 
less than T. These pixels belong to grey levels 

 1,2,...,T . The binary segmentation image is 

given in equation (5). 

0

1

1  if ( , ) ;  Class  
( , )

0 otherwise;       Class 

I x y T C
x y

C



 


 (5) 

Let 0 ( )T  and 1( )T  denote the mean pixel 

grey value, 0 ( )T , and 1( )T  denote the weight 

parameter, 
2

0 ( )T , and 
2

1 ( )T  denote the 

variances of classes 0 1,C C , respectively. They 

are given in equation (6), and equation (7). 
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(7) 

The mean grey level of all pixels in the 
infrared image is computed in equation (8). 
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(8) 

The between-class variance is computed in 
equation (9). 

   
2 22

0 0 1 1( ) ( ) ( ) ( ) ( )b T T T T T           (9) 

The within-class variance is computed in 
equation (10). 

The optimal threshold 
*T value of the Otsu’s 

method is determined as given in equation (11) 
or in equation (12). 

 * 2

1

arg max ( )b
T L

T T
 

  (11) 

 * 2

1

argmin ( )w
T L

T T
 

  (12) 

Unfortunately, the original Otsu’s method 
may fail or not perform well enough if there is a 
significant difference in intra-class variance 

(Zhou & Xia, 2016). It is proven that the 
threshold of Otsu’s method is near to pixel class 
with high intracranial variance (Xu, 2011). It 
means that the threshold of the Otsu 

segmentation method may lead to over-
segmentation problems with noisy images or 
those images of low contrast and not well-

distributed pixel density. Therefore, in the next 
section, we try to construct an effective 

threshold-adjusting strategy for infrared image 
segmentation based on the Otsu’s method. 

Proposed infrared image segmentation 

algorithm 

Property: Let *T be the optimal threshold, 
which divides a given infrared image into two 
classes with the smallest within-class variance in 

each class. 
*

0 ( )T , and 
*

1( )T  are the mean 

pixel grey values with *T . If 
* *

0 10.5 ( ) ( )mT T T     , then 
*

mT T or 

there are no pixels having grey value in the range 

between *T and mT . 

Proof: Let *T  represent the optimal 
threshold, which minimizes the within-class 
variance in each class. 

 2 2 *( ) ( ), 1,...,w wT T T L    . We assume 

that 
*

mT T therefore 
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The within-class variance is computed as 

given in equation (14). 
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(16) 
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According to equation (13), we have: 
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or 
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*

2 * 2 *( ) ( )  or 0
m

T

w w m m i

i T

T T T T p 


     (19) 

By a similar method, it can be proved that 

*

mT T or 

*

0
m

T

i

i T

p


  in the case of 
*

mT T . 

Based on the above analysis, an infrared 
image segmentation algorithm based on the 
improved Otsu algorithm is called the Optimal 
Threshold Segmentation (OTS) algorithm. In this 

proposed algorithm, an optimal threshold *T can 
be calculated iteratively. The details of our 
proposed OTS algorithm are described in 
Algorithm 1. 

Algorithm 1 OTS algorithm 

Input: 

Raw infrared image ( , )I x y ; 

A grey level histogram hist. 

Output: 

Optimal thresholds of each infrared 

image *T ;   

Segmentation images ( , )x y . 

Initiation: The predefined threshold  
*

0 ;

Choose an initial threshold 0 1T  , which 

divides a given infrared image into two 

classes; d   ; 

1 
Procedure OTS_ALGORITHM(

* *

0 0, , , , ( , )T d T x y  ) 

2 Chose the optimal threshold: 
*

0;T T  

3 while 
*

0d  do 

4 

Calculate the mean pixel grey value 

with threshold 
* *

0 ( ),:T T and 
*

1( )T

by using equations (6), (7). 

5 
Calculate the mean level of two classes. 

* *

0 10.5 ( ) ( )mT T T                    (20)                                                                           

6 

Calculated the distance between the 

threshold value and the mean level of 

two classes: 
*

md T T                                     (21)                                                                                                                                                                                      

7 if  
*

0d   then * * 1.T T   

8 end if 

9 end while 

10 
The optimal threshold of the candidate 

infrared image is  *T . 

11 

The binary segmentation image is 

obtained by using the following 

equation: 
*

0

1

1 if   ( , ) ; Class C
( , )

0  otherwise;      Class C

I x y T
x y

 
 


     (22)                                                              

12 end procedure 

Electrical hotspot detection 

In this section, the hotspots of electrical 
components and the hot regions of an image with 
pixel intensity greater than a threshold are 
detected automatically. From equation (22), the 
defect electrical components contained in the 
thermal image are given in equation (23). 

0

0

( , )  if    ( , ) 1
( , )

0           if    ( , ) 0x M

y N

I x y x y
x y

x y




 

 


 


 (23) 

The temperature of each defective electrical 
component at each pixel in location is computed 
as given in equation (24). 

   min max min
0

0

( , )
,

255x M

y N

x y
T x y T T T



 

 

    
(24) 

where max min,T T  denote the highest and 

lowest temperature extract from an infrared 
image, respectively. Unfortunately, the total 
amount of electromagnetic energy received by a 
thermal camera, which influences the 
temperature measurement by infrared 
thermography, is based on Stefan-Boltzmann's 
law. It is a combination of the energy emitted by 
the object, the reflected energy, and the energy 
emitted from the ambient temperature 
(Doshvarpassand et al., 2019), and may lead to 
some fake hotspots on the infrared image. 
Therefore, it is important to minimize the amount 
of these fake hotspots. To do this, the pixel 
characteristic types corresponding to spatial and 
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temporal information should be considered 
carefully (Luo et al., 2019). In this study, a spatial-
temporal modeling algorithm for electrical hotspot 
detection is proposed. Our proposed algorithm 
detects the defective electrical component from 
infrared image sequences. 

Let ( , , )I x y j denote the grey value of a pixel 

at location  ( , ) 0 ;0x y x M y N     at the 

{0 }thj j k  frame of infrared image sequence. 

The segmented image at frame thk  is computed 
as given in equation (25). 

   
0 0 0

1
, , , ,

M N k

x y j

x y k x y j
k

 
  

   (25) 

The temperature of the electrical component in 
equation (24) is rewritten as given in equation (26). 

   min max min
0

0

( , , )
, ,

255x M

y N

x y k
T x y k T T T



 

 

     

(26) 

where  , ,T x y k is the temperature of pixel at 

location ( , )x y at frame
thk . The process of 

infrared image segmentation is depicted in 
Figure 2. 

Let  , ,0T x y denote the temperature of a 

pixel at location ( , )x y  when the electrical 

equipment works in a normal condition. It is 
called the reference temperature of the candidate 
pixel. The temperature values of pixels 

   , ,0 , [0, ); [0, )T x y x M y N   are obtained by 

manual measurement. The difference in 
temperature values of the same position pixel 
between two working conditions 

1;T T   is used 

to detect defective electrical equipment. Due to 

the value of 
1,T T  , the working conditions of 

electrical equipment are classified into two 
classes:  normal and defective (overheated) 

classes. These values are computed in equations 
(27), (28) and  given in Table 1. 

( , , ) ( , ,0)T T x y k T x y    (27) 

1

1

1
( , , ) ( , , )

k

i

T T x y k T x y i
k 

     (28) 

Experiment and analysis 

To evaluate the real-time performance of the 
proposed FFDM method, an experimental setup 
for electrical equipment defect detection was 
conducted as described below. 

Image acquisition system 

The thermal images of electrical equipment 

are taken by an infrared camera at different view 
angles. In this study, a FLIR E8-XT thermal 
camera was used to capture the images. Table 2 
shows the specifications of FLIR E8-XT. For 

capturing the infrared image of electrical 
equipment, the distance between the infrared 
camera and the electrical equipment varies from 

0.5 to 2.5 meters. The ambient temperature of the 

electrical equipment is between 28 C and32 C

during the experimental conduction. 

Evaluating indicator 

In this section, the performance of our 
proposed scheme in terms of infrared image 
segmentation and electrical hotspot detection 

is presented. 

For the first quality indicator, the quality of 
the segmented defective electrical equipment 
region can be measured by comparing manual 
segmentation to our proposed segmented 
algorithm. Let TP denote the true positive in 
which pixels of defective electrical equipment 
areas are classified correctly as defective 
electrical equipment pixels; FP (False positive):   

  Table 1.  The classification of electrical equipment due to its thermal condition 

The difference in 
temperature (°C) 

Priority 
level 

Thermal 
condition 

Recommended actions 

1

5 or

5

T

T

 

 
 I Normal Small overheating and need further study 

1

5 15 or

5 15

T

T

  

  
 II Overheated 

Some potential defect locations and need to repair as soon as   
possible 

1

15  or

15

T

T

 

 
 III Overheated 

Thermal defects in electrical equipment and it must be corrected 
immediately 



 Nguyen Xuan Truong et al. (2025) 

https://vjas.vnua.edu.vn/                                                                                                                                                                                                                    2515 

 

  Table 2.  Technical specifications of thermal camera 

Parameters FLIR E8-XT Unit 

Resolution 320 x 240 Pixels 

Measurement method Radiometric  

Measurement range -20 to +250    C  

Accuracy 2   C  

Temperature sensitivity 0.05  C  

Spectral range 7.5 to 13  m  

Pixels in non-defective electrical equipment 
areas are misclassified as defective electrical 
equipment pixels; TN (True negative): pixels in 
non-defective electrical equipment areas are 
classified correctly as non-defective electrical 
equipment pixels; FN (False negative) pixels of 
defective electrical equipment are misclassified 
as non-defective electrical equipment pixels. 

Precision ( ),rP  Recall (R ),c  and 1( )F score 

are calculated as given in Equations (29), (30), 
(31), respectively. 

 x1  00r

TP
P

TP FP



 (29) 

 x1  00c

TP
R

TP FN



 (30) 

1

2 x   x 
.r c

r c

P R
F

P R



 (31) 

For the second quality indicator, the highest 
temperature values of the defective electrical 
components are extracted automatically from our 

proposed algorithm. They are compared with the 
temperature values which are measured manually 
by a digital thermometer at the same time and the 

same location of the electrical components.  

Results and Discussion 
Segmentation results 

In this paper, 300 thermal images of several 
kinds of electrical equipment, such as power 
transformers, high-voltage lines, electrical 
motors, and circuit main boards, are used to 
detect the location of abnormal electrical 
components. In Figure 3, the segmentation 
results of these thermal images are shown. The 
first column (Figure 3a) depicted the original 

thermal images. The ground truth of 
segmentation images is given in the second 
column (Figure 3b). The segmented images of 
the defect electrical components obtained by 
Otsu' threshold algorithm and our proposed OTS 
algorithm are depicted in the third fourth 
columns, respectively (Figures 3c, 3d). The 
comparison of thermal image segmentation 
results between the Otsu' threshold algorithm and 
our proposed OTS algorithm are given in Table 
3. Table 3 shows the image segmentation results 
with three indicators: Precision,   Recall,   and   
score  of each algorithm on the same image 
samples. As defined in formulas (29), (30), and 
(31) these indicators represent the correct 
classification ratio of the algorithm. Therefore, 
the higher value of these indicators indicates the 
better performance of the algorithm. The 
simulation results in Table 3 show that our 
proposed method outperforms the Otsu's 
threshold algorithm on all image samples. The 
averages of  our proposed OTS algorithm are 
97.57%, 96.54% and 97.05%, respectively. 
These values obtained by Otsu's threshold 
algorithm were only 96.31%, 93.11% and 
94.68%, respectively. Our proposed OTS 
algorithm demonstrates strong performance for 
image-processing applications. 

Temperature extraction results 

Figure 4 shows the temperature extraction 
results from thermal images of electrical 
equipment. Figure 4a depicts the temperature 
extraction from the power transmission line; The 
Figures 4b, 4c, 4d, 4e and 4f show the results of 
hotspot detection on the electrical switchboard, 
the electronic circuit, the electrical motor, and the 
power transformer, respectively. Table 4 shows  
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Figure 2. The process of infrared image 
segmentation 

Figure 3. The process of defect detection in electrical equipment 

    

Table 3. The comparison of thermal image segmentation results between the Otsu' threshold algorithm and our proposed OTS algorithm 
 

Sample 
Otsu OTS 

Pr Rc F1 Pr Rc R1 

1 96.72 95.10 95.90 97.39 95.64 96.51 

2 95.95 91.03 93.42 97.52 96.39 96.95 

3 96.22 91.63 93.87 97.65 96.52 97.08 

4 95.66 89.47 92.46 97.79 97.03 97.41 

5 95.24 88.61 91.80 97.92 97.80 97.86 

6 95.81 91.12 93.40 97.66 97.28 97.47 

7 96.15 93.43 94.77 97.53 97.02 97.27 

8 96.13 92.90 94.49 97.65 96.26 96.95 

9 96.30 94.06 95.16 97.77 95.39 96.57 

10 96.08 91.27 93.61 97.63 94.76 96.18 

11 96.35 91.76 94.00 97.76 94.89 96.31 

12 96.37 92.40 94.34 98.04 96.03 97.02 

13 96.51 92.53 94.47 97.91 95.90 96.89 

14 96.29 93.56 94.90 98.04 96.78 97.41 

15 96.55 93.69 95.09 98.05 97.16 97.61 

16 96.58 94.47 95.52 97.14 96.13 96.63 

17 96.44 94.33 95.37 96.74 95.99 96.37 

18 96.85 96.73 96.79 96.90 97.53 97.21 

19 96.98 96.85 96.91 97.18 97.55 97.37 

20 97.11 97.37 97.24 97.06 98.70 97.87 

Average 96.31 93.11 94.68 97.57 96.54 97.05 

(a) The original 
thermal image 

 

(b) The ground 
truth image 

 

(c) The segmented 
image obtained by 

Otsu’ threshold 
algorithm 

 

(d) The 
segmented 

image obtained 
by OTS 

algorithm 
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Figure 4. Extracting temperature values of electrical components 

the simulation results of extracting temperature 
from the IR image. The comparison between 
the ground truth (the measured temperature) 
that was obtained by manual manner and the 
extracted temperature obtained by our 
proposed method shows that the average 
accuracy is 0.951. The highest and smallest 
difference in temperature between the 
measured temperature and the extracted 

temperature are 3.8( )C and 1.6( )C , 

respectively. For evaluation, we conducted 
additional  experiments on a public thermal 
dataset (Doutorado, 2023) to measure the 
performance of our proposed method. 

Temperature extraction results 

The RNA_Eduardo_Tese model offers a 
versatile, AI-based solution for monitoring and 
maintaining electrical infrastructure. It enables 
autonomous identification of power equipment 
such as transformers and voltage switches, 
facilitating predictive maintenance, and 
enhancing grid reliability. When integrated 
with drone platforms, the model supports real-
time aerial surveillance of power lines, 
enabling rapid detection of faults and reducing 
transmission downtime. In post-disaster 
scenarios, it assists in damage assessment and 
prioritization of restoration tasks. Moreover, 
the model contributes to infrastructure planning 
by classifying equipment types and supporting 
optimized layout designs, while also improving 
asset inventory control by detecting aging or 
obsolete components requiring replacement. 
Figure 5 shows the temperature estimation on 
thermal image dataset (Doutorado, 2023). The 

RGB and thermal images of the hottest parts of 
the  transformer are depicted in Figures 5a, 5b, 
while the extracted temperature of the hotpots 
are shown in Figure 5c. Figure 6 shows the 
difference between measured and extracted 
temperature. As described in Figures 5 and 6, 
there is no significant difference between the 
measured and extracted temperature values 

( )T . Greater than 92% of the measured 

points hav a difference in temperature between 
the measured and extracted temperature values 
less than 5 Celsius degree. 

To validate the real-time performance of 
the proposed thermal image analysis model for 
power equipment monitoring, a series of 
experiments were conducted using real-world 
thermal images captured from substations. The 
dataset included 300 thermal images 
(resolution: 320×240) representing various 
electrical components under different operating 
conditions. The model was deployed and 
benchmarked on an NVIDIA Jetson Xavier NX 
edge computing platform. Each image was 
processed individually, and latency was 
recorded over 100 iterations to obtain an 
average runtime value. Power consumption and 
CPU/GPU utilization were also monitored 
during execution. The experimental results 
demonstrate that the proposed AI-based 
thermal image classification model achieves 
real-time inference capability when deployed 
on an embedded edge computing device. With 
an average processing speed exceeding 23 
FPSduring execution. The experimental results 
demonstrate that the proposed AI-based 
thermal  image  classification  model  achieves  

(a) The power transmission 

line 

(b) The electrical switchboard (c) The electronic circuit 

(d) The electrical 

motor 

(e) The electrical motor 

under high-load conditions 

(f) The power transformer 
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Figure 5. Temperature estimation on thermal image 

dataset (Doutorado, 2023) 

Figure 6. The difference between measured and extracted 

temperature 

 

real-time inference capability when deployed on 
an embedded edge computing device. With an 
average processing speed exceeding 23 FPS and 
modest resource consumption, the system is 
well-suited for continuous monitoring and 
anomaly detection in electrical substations. The 
lightweight model architecture ensures 
compatibility with power-constrained field 
devices, supporting scalable and autonomous 
condition-based maintenance strategies in smart 
grid applications. 

Despite the promising results, the proposed 
approach exhibits several limitations when 
deployed in real-world scenarios. First, 
environmental factors such as high reflectivity of 
metallic surfaces, inconsistent ambient lighting, 
and varying emissivity across different equipment 
types may lead to inaccurate thermal readings or 
misclassification. Second, preliminary experiments 
show a slight degradation in model performance 
under severe occlusion, partial obstruction of 
equipment, or when thermal contrast between 
faulty and healthy components are minimal. 
Additionally, the current dataset does not fully 
capture all possible variations in operational and 
environmental conditions, which may limit 
generalization. To address these challenges, 
ongoing research focuses on: enhancing adaptive 
image preprocessing techniques to normalize 
thermal contrast; applying domain-specific data 
augmentation to simulate noise and artifacts; 
exploring multi-modal fusion, combining thermal 
images with visible-spectrum data or electrical 
measurements to improve robustness. These efforts 
propose to increase the reliability and adaptability 

of the system for real-time fault detection and 
diagnostics in complex electrical infrastructure. 

Conclusions 

This paper presents an efficient fault 
diagnosis method for electrical equipment based 
on infrared thermography, consisting of three 
key stages: image processing, temperature 
segmentation, and image feature analysis. The 
proposed OTS-based segmentation algorithm 
achieves a precision rate of 97.5%, 
outperforming the traditional Otsu method 
(96.31%) by effectively minimizing over-
segmentation and improving hotspot 
localization. Furthermore, the spatial-temporal 
modeling technique enables accurate tracking of 
temperature variations, yielding a temperature 
estimation accuracy of 95.3%, with over 92.0% 
of measured points showing a deviation of less 
than 5°C compared to ground truth. Beyond 
numerical performance, the proposed method 
demonstrates high potential for real-time, non-
contact thermal monitoring in substations and 
critical power infrastructure. Its lightweight 
nature makes it well-suited for edge deployment, 
supporting early fault detection and predictive 
maintenance. However, limitations exist when 
dealing with low thermal contrast, reflections 
from metallic surfaces, or environmental 
disturbances, which may introduce noise or false 
positives. To address these challenges, future 
work will focus on integrating multi-modal data 
(e.g., combining thermal and visible-spectrum 
images), improving robustness under real-world 
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noise, and benchmarking against advanced deep 
learning segmentation models. The method also 
creates promising applications in autonomous 
drone-based inspections and large-scale smart 
grid monitoring. 
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