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Abstract 

The application of hydro-mechanical transmissions is recently the 
trend in agricultural vehicles where a continuously variable 

transmission ratio has advantages. Hydro-mechanical transmissions 
provide efficient power transfer while maneuverability is still 

maintained, and therefore, fuel efficiency is enhanced. Nevertheless, 
the main issue in their employment is a precise control of the 

hydrostatic unit, whose physical characteristics are highly nonlinear 
and affected by unknown disturbances. In order to exploit the 
advantages of the system, the transmission ratio of the hydrostatic 

unit needs to be controlled properly to maintain the optimal working 
point of the internal combustion engine (ICE). This article presents 
numerical comparison results of a proportional-integral (PI) and a 
neural network (NN) based controller applied to the hydrostatic unit 

of a hydro-mechanical transmission system, which was designed to 
be deployed on a self-propelled agricultural vehicle. The controls 
were established in a discrete-time domain aiming at a practical 

outcome, where the control algorithm could be implemented on an 
industrial computer to perform the control tasks. 
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transmission ratio control, model-free control, neural network-based 

control 

Introduction  

Environmental policies regarding emissions from internal 
combustion engines (ICEs), including agricultural machinery, are 
imposed by regulations in automotive technology. These policies 
force manufacturers towards hybrid solutions (Marcor et al., 2017; Yu 
et al., 2019). Over the past few years, the development of a drivetrain  
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for agricultural machines has involved the 
implementation of continuously variable 
transmissions to keep the ICEs working at 
minimal fuel consumption points. Various types 
of continuously variable transmissions (CVTs) 
have been explored, among these, the hydro-
mechanical transmission, sometimes referred to 
as power split gearbox, provides the balance 
between fuel efficiency and manufacturing cost 
(Marcor & Rossetti, 2011; Kwon & 
Ivantysynova, 2020), and therefore, has become 
the trend in many applications, including 
agricultural machinery.  

Hydro-mechanical transmissions are 
comprised of two main components: a planetary 
gear set and a hydrostatic unit. The power, 
provided by the ICE, is transmitted to the drive 
axle along two parallel paths - the mechanical 
path and the hydrostatic path. Power transmitted 
in this way allows the engine to simultaneously 
exploit the advantages of the continuously 
variable characteristics of hydrostatic units and 
the efficiency of mechanical transmissions 
(Schulte & Gerland, 2011; Kwon & 
Ivantysynova, 2020). The structure principle of 
a hydro-mechanical transmission in a self-
propelled vehicle is demonstrated in Figure 1. 

Regarding the control aspect, the practical 
issue in the application of hydro-mechanical 
transmissions is the achievement of precise 
control for the hydrostatic unit, whose physical 
characteristics are highly nonlinear and affected 
by unknown disturbances such as kinematic 
viscosity, fluid temperature variations, leakage 
oil flow, and the elasticity of the hydraulic hoses 
(Nawrocka & Kwasniewski, 2006). Proportional 
- integral - derivative (PID) controllers are still 
predominant in industrial applications of 
hydrostatic transmissions. Their performance, 
however, is not adequate to provide accurate 

control throughout the whole working range of 
the system (Kwasniewski et al., 2003). Current 
advanced control designs for hydrostatic 
transmissions are mostly based on an explicit 
mathematical model of the system and many 
advanced concepts can be found in the 
literature. In the work of Wu & Lee (1996), a 
self–tuning pole–placement adaptive control 
theory was implemented for different 
configurations of a hydrostatic transmission. A 
Linear-Quadratic-Gaussian control design was 
applied and the obtained regulator was 
implemented in different ways for the system in 
a study of Lennevi & Palmberg (1995) using 
non-linear and linearized models, among others. 

The performance of model-based 
controllers obviously depends on the accuracy 
of the mathematical model of the system. Under 
the impact of unknown disturbances and 
uncertainties in the model, the control 
performance reduces. Model-free control 
designs are good solutions for this issue. In 
Dang & Aschemann (2020), neural network-
based controllers were implemented for 
nonlinear compensation and an improvement of 
hydraulic motor velocity control performance. 
In this control scheme, a mathematical model 
was partly used, which reduced the accuracy of 
the employed dynamics model. The study of 
Danh & Aschemann (2021a) presented the 
application results of a sliding mode control for 
motor velocity tracking. The study exploited the 
advantages of an almost model-free control 
design that did not rely on a complete model of 
the system. In further work of Danh & 
Aschemann (2021b), a generalized proportional-
integral controller for hydrostatic transmission 
was investigated, which was also applied to 
control the angular velocity of the hydraulic 
motor of the system. 

  

Figure 1. Principle of a hydro-mechanical transmission 

Hydrostatic unit 

Planetary gear set 
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In this article, a neural network-based 

model free controller was designed for 

transmission ratio regulation of the hydrostatic 

unit in a hydro-mechanical transmission 

system, which has not been addressed in the 

literature thus far. The addressed controller 

performed the task aiming to maintain a 

constant speed of the ICE at its optimal fuel 

working point regardless of the load change 

exerting on the hydraulic motor shaft. The 

controller was established in discrete-time 

form aiming at a practice-oriented outcome.  

A numerical comparison result with an 

industrial PI controller is also presented to 

provide a closer look at the performance of the 

designed controller. 

Materials and Methods 

The structure of the hydro-mechanical 

transmission in a self-propelled agricultural 

vehicle is shown in Figure 1. The motive 

power was supplied from an ICE, and this 

power was transmitted to the final drive (FD) 

of the vehicle through two parallel paths - the 

hydrostatic path and the planetary gear set 

path. The transmission ratio of the planetary 

gear set was fixed and the transmission ration 

of the whole system could be varied 

continuously by changing the transmission 

ratio of the hydrostatic unit using an automatic 

control device. 

In the provided configuration, the 

hydrostatic unit was comprised of two 

components: a variable volumetric displacement 

pump and a fixed volumetric motor. They were 

connected in a closed hydraulic circuit. The 

pump was driven by the ICE, which partly 

supplied mechanical power to the hydraulic 

system. This power part was converted to 

hydraulic power in the form of pressurized fluid 

flow, which was transmitted to the hydraulic 

motor. At the motor, it was converted back to 

the mechanical rotational power of the motor 

shaft, then, added to the mechanical path. The 

principle structure of the hydrostatic drivetrain 

is presented in Figure 2. This system used  

a speed sensor to provide feedback for the 

control design. 

The model was established using the 

Matlab/SIMULINK simulation toolbox with the 

utilization of the Simscape library. Based on the 

principle structure of the hydrostatic drivetrain 

in Figure 2, the model was comprised of the 

following three components. 

The ICE model component This block 
represented a model of an internal combustion 
engine (Figure 3), which stood for the motive 
power of the vehicle. The model reacted to the 
load torque applied at the shaft in a similar way 
as a real engine does. This meant that the 
velocity of the engine crankshaft varied 
according to the value of the load. A controller 
was equipped to maintain a constant velocity of 
the engine despite load torque changes. 

The load model component This model 
component simulated the load acting on the 
output shaft of the hydraulic motor (Figure 4). 
The load torque value was subjected to changes 
over time, which generated variations in the 
torque transmitted back to the engine through 
the hydrostatic transmission unit. 

The hydrostatic unit model component The 

hydrostatic unit model consisted of several basic 

hydraulic subcomponents as shown in Figure 5. 

The Simscape library provided a realistic 

hydraulic element model, which allowed for a 

dependable result. The hydraulic pump and 

hydraulic motor models accounted for losses 

due to leakage flow and friction torque; the 

hydraulic pipes simulated the hydraulic hoses 

with resistance and elasticity; the fluid 

properties element evoked the physical 

characteristics of hydraulic oil such as density, 

viscosity, and compressibility; and the first 

order lag block provided the dynamic response 

of the servo valve of the hydraulic pump, which 

determines the transmission ratio of the 

hydraulic transmission unit. 

The variation of load torque was the main 

source that caused the velocity change to the 

ICE due to the dynamic characteristics of the 

ICE. The controller was implemented to 

monitor the angular velocity of the ICE and 

regulate the transmission ratio of the hydrostatic 

unit to maintain a constant ICE velocity at its 

optimal working point. The whole system 

scheme is depicted in Figure 6. 
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Figure 2. Principle structure of the hydrostatic drivetrain 

 

Figure 3. ICE model component 

 

Figure 4. Load model component 

 

Figure 5. Hydrostatic unit model component 

As demonstrated in Figure 6, the 
hydrostatic transmission unit was driven by the 
ICE and it generated a counterbalance to the 

load torque, l. The controller monitored the 

angular velocity, e, of the ICE and took the set 

point value of the ICE angular velocity, d, as 
the input command. The controller produced a 
control signal, u, to regulate the transmission 
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ratio of the hydrostatic unit to keep the ICE 
velocity at its set point value despite changes to 
the load torque. 

Results and Discussion 

The PI control 

Proportional-integral-derivative (PID) is the 
most widely used control strategy in industrial 
processes and it is still predominant in the 
control of hydrostatic transmissions. In time 
domain, the control law is stated as follows: 

( ) ( )

( )

( )

=

+

+



p

i

d

u t K e t

K e t dt

de t
K

dt

 (1) 

where: u(t) is the control signal generated 

by the PID controller; e(t) stands for the control 

error, which is the difference between the output 

value of the controlled system and its desired 

(set point) value, e(t) = e(t) - d; and Kp, Ki, 

and Kd are the three gains of the proportional, 

integral, and derivative terms, respectively. 

The proportional (P) term produces a 

control output signal that is proportional to the 

error of the system output response. When an 

equilibrium is reached, a steady-state error 

exists always. The integral (I) term accounts for 

the past value of the error. The term 

accumulates the error and produces a 

compensating signal to eliminate the steady-

state error. The derivative (D) term provides an 

estimation of the future response of the system 

based on the current change rate of the output 

error; this term acts as a damping element in the 

control action. 

In industrial implementations of the PID 

control, the D term is usually set to zero (Kd = 

0), as seen in Knospe (2006), to avoid a noisy 

signal that is caused by the derivative of the 

measured output, and therefore, the popular 

form of the controller becomes  

PI control: 

( ) ( ) ( )= + p iu t K e t K e t dt  (2) 

In discrete-time form where the control 

strategy is implemented in a digital controller, 

the control law is established using rectangular 

quadrature numerical integration as follows: 

( ) ( ) ( )
0=

= + 
n

p i s

k

u n K e n K T e k  (3)

 

Figure 6. The block diagram of the control scheme 

 

Figure 7. The implementation of PI control 
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Figure 8. Principle structure of an artificial neuron 

 

Figure 9. General structure of a neural network 

Here, Ts presents the discrete time interval; 

n denotes the current time step index; and the 

index k expresses the discrete step k. In 

Matlab/Simulink simulations, the employment 

of PI control is easy by using the discrete-time 

integrator for the numerical integral term. The 

implemented PI control is shown in Figure 7. 

The neural network-based control design 

An artificial neuron is a function of the 

input, which is weighted by a factor referred to 

as the connection weight. A neuron generally 

consists of multiple inputs and weights, thus, the 

neuron function can be stated in vector form  

as follows: 

( ) ( )= +Tf bx x v  (4) 

where xT = [x1, x2,…, xm] presents the vector 
of m inputs; v = [v1, v2,…, vm] is the input 

weight vector; b denotes the bias of the neuron; 

and (.)
 
is the activation function, of which, the 

sigmoid function is a popular form. The 
structure of a single neuron is demonstrated in 
Figure 8. 

A neural network (NN), also called a 

multilayer perceptron, is a complex structure 

composed of several neurons in the form of 

neural layers, as depicted in Figure 9. As 

demonstrated, the neural network consists of 

two layers. The input layer has l neurons, each 

neuron takes m inputs as the input vector x = 

[x1,…, xm] with its corresponding connection 

weight vectors v1 = [v11,…, vm1] ,…,  

vl = [v1l,…, vml], and they use the activation 
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function 1(.) with the biases b1,…, bl. The output 

layer is comprised of only one neuron 

corresponding to one output. It has weighting 

vector w = [w1,…, wl], the bias a, and uses the 

activation function 1(.). Multilayer perceptron 

or neural networks have been applied 

successfully in the field of dynamic system 

identification and control. For a comprehensive 

overview of neural networks and their 

applications, see Hagan et al. (2002). 

The output of a multilayer perceptron, as 
shown in Figure 9, is evaluated according to: 

( ) ( )2 1

1

. .
 

= + + 
 


l

T

i i ia w bf  x x v  (5) 

In this study, a two-layer neural network 
was used to design a controller in a similar way 
proposed in the work of Danh & Aschemann 
(2021c) for the control task on a hydrostatic unit 
of a self-propelled vehicle. The designed control 
consisted of two components - a proportional 
(P) control and a feedforward compensator 
using a neural network, which produced the 
compensation signal that was trained by  
the current measurement error of the  
controlled output. 

The P control 

A P control was used to reduce the control 

error, which improved the learning performance 

of the neural network in the early training phase. 

The output signal from the P control was 

calculated according to: 

=P Pu k e   (6) 

where the control error e is defined by  

e = e – d, and kP > 0 is the positive control 

gain that is empirically tuned. 

The neural network compensator 

The control signal from the neural network 

compensator was evaluated according to:  

( ) ( )
1

. .= = + +NN i

l

i ix au f w x v b   (7) 

As implied in (7), the selected neural 
network consisted of two layers. The output 
layer had a single neuron with a linear 
activation function and connection weights 
w1,…,wl. The input layer was composed of l 

neurons. They took x = d as the single input 
with corresponding connection weights v1,…, vl, 
and used the sigmoid activation function. The 
weights were trained by the control error e  

using the well-known back-propagation training 
technique. The implementation of the neural 
network-based control is shown in Figure 10. 

Using the back-propagation training 
technique, the weights of the neural network 
were updated in such a way as to minimize the 
cost function of the control error: 

21

2
= eE  (8) 

and this led to a gradient descent updating 
law for each update step as follows: 
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 (9) 

Here,  specifies the learning rate.  
The gradient of the cost function with respect to 
the network weights was evaluated using the 
chain rule: 

,

.

  

  
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=

    
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i e iNN

e NN

i e iNN
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w e u w









 (10) 

The gradients with respect to the biases a 
and bi were applied similarly. According to 
mathematical definition, some terms in (10) can 
be determined as follows: 
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 (11) 

where  and are the partial derivatives of 

the activation function , which are defined by: 
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Figure 10. The implementation of the neural network-based control 
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The remaining term in (10), 



e

NNu


, is 

unknown. It can be, however, replaced by its 

sign without knowing the true value. The sign 

can be deduced from experimentation on the 

real system. With the given configuration of the 

hydrostatic transmission unit, when the 

transmission ratio increases, namely uNN 

increases, the angular velocity of ICE reduces, 

implying: 

1


= −


e

NNu


 . (13) 

Substituting (10), (11), and (13) into (9) 

results in the overall training rule as follows: 
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(14) 

Numerical results 

The proposed controllers were implemented 

in the Matlab/Simulink simulation environment 

according to the control schemes shown in 

Figure 7 and Figure 10. The set point value of 

ICE was supplied to the controllers. The angular 

velocity of ICE was measurable and used as the 

feedback signal to calculate the control error, 

and measurement noise was also added for a 

realistic simulation result. The load torque 

generator produced a varying resistance torque 

applied to the output shaft of the hydrostatic 

transmission unit. 

The parameters of both the PI and NN-

based controllers were manually tuned for the 

best control results in the same simulation 

conditions. For the PI control, KP = 40, Ki = 400. 

For the NN based control, kP = 40, the number 

of neurons was l = 10, and the learning rate was 

 = 0.3. According to the ICE performance 

characteristics, the set point value was set to 

2600 rpm at the optimal working point. The 

discrete time step was set to Ts = 1 ms. 

In the first simulation test, the value of the 

load toque was varied from 135  Nm to 165  

Nm in the form of a slow sinusoidal oscillation 

as shown in Figure 11. The comparison of the 

control results for both the PI and NN-based 

controls are shown in Figure 12 and Figure 13. 

As can be seen, the controlled output 

followed the set point very well with small 

errors for both controllers. The statistical data  

of the control performance is summarized in 

Table 1. 

The statistics showed that, in the case of a 

slow load oscillation, both controls performed 

very well with small differences in terms of the 

control results. The NN-based control results 

were 11.2% smaller than the maximal control 

error and 14.8% smaller than the RMS error in 

comparison to the PI controller. 
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Figure 11. Slow varying load torque 

 

Figure 12. Control results comparison of the PI and NN-based controls for a slow varying load 

 

Figure 13. Control error comparison for a slow varying load 

Table 1. Statistics comparison of control error for a slow varying load 

 Max. Error [rpm] RMS error [rpm] 

PI control 1.60 0.54 

NN control 1.42 0.46 

 

The second test case was performed with a 

pulse load larger magnitude in comparison to 

the first case. Here, the value of the load torque 

varied from 120Nm to 180Nm in the form of a 

pulse signal as shown in Figure 14. The results 

of this test case are presented in Figure 15 and 

Figure 16. 

As presented in Figure 15 and Figure 16, 

in the case of a pulse load, the NN-based 

controller performed better than the PI 

controller, with the difference being remarkable. 

The statistical data of control performance for a 

pulse load is summarized in Table 2. 

The statistics show that, in the case of a 
large magnitude and fast varying load torque, 
both controls were still capable of keeping the 
set point quite well. The NN-based control, 
however, had superior results 21.6% smaller 
that the maximal control error and 27.4% 
smaller that the RMS error in comparison to the 
PI results. 
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Figure 14. The pulse load torque 

 

Figure 15. Control results of the PI and NN based controls for a pulse load 

 

Figure 16. Control error comparison in the case of a pulse load 

Table 2. Statistics comparison of control error for pulse load 

 Max. Error [rpm] RMS error [rpm] 

PI control 8.20 3.50 

NN control 6.43 2.54 

 

Conclusions 

PI is a well-known control approach in 

practice, while neural network-based control is 

an advanced method that provides accuracy and 

robustness for applications in uncertain dynamic 

systems. The simulation results in this study 

showed that the deployment of a neural 

network-based control for a hydro-mechanical 

transmission provided a robust and fast response 

control solution. The designed controller did not  

require a complete mathematical model of the 

hydro-mechanical transmission system, which 

allowed for simplicity of the design process and 

guaranteed robustness for the control structure. 

The designed neural network-based control 

promises a good result in practice. 
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