Vietnam Journal of Agricultural Sciences

Comparative Analysis of an Integral Component of Bacterial Cell Division from the *Lactococcus* and *Bacillus* Genera

Tong Van Hai¹, Vu Ngoc Lan ², Pham Thu Ha¹, Le Thi Van¹, Tran Thi Hong Hanh¹, Bui Thi Thu Huong¹, Nguyen Hai Phuong³, Ha Thi Quyen⁴ & Ha Duc Chu⁴

¹Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi 131000, Vietnam

²Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi 131000, Vietnam

³Department of Biochemistry, National Hospital of Obstetrics and Gynecology, Hanoi 111670, Vietnam

⁴Faculty of Agricultural Technology, University of Engineering and Technology, Vietnam National University of Hanoi, Hanoi 113100, Vietnam

Abstract

FtsZ proteins have been well-characterized to play a crucial role in cell division. Unfortunately, data are scarce on FtsZ proteins in the Lactococcus and Bacillus genera. The objective of this study was to analyze the features of FtsZ proteins in the Bacillus and Lactococcus genus groups. By exploring the available genomes, we identified and characterized FtsZ proteins in 19 Bacillus and 22 Lactococcus species. The sizes and weights of the FtsZ proteins ranged from 376 to 410 aa residues and 39.53 to 44.15 kDa in the Bacillus genus, respectively, and from 387 to 430 aa residues and 41.14 to 45.11 kDa in the Lactococcus genus, respectively. All the FtsZ proteins in the Bacillus and Lactococcus species were acidic and globular, and localized in the cytoplasm. Next, 3D modeling and multiple alignments were performed. We realized that the FtsZ proteins in the Bacillus and Lactococcus species exhibited five specific regions. Taken together, our study could provide a general background for further functional characterization of the FtsZ proteins in Bacillus and Lactococcus species.

Keywords

Lactococcus, Bacillus, FtsZ, conserved domain, protein

Introduction

Cell division is a crucial process for living organisms. Principally, cell division in bacteria is orchestrated by a divisome. In this step, FtsZ, a polymer-forming guanosine-5'-triphosphatease (GTPase), drives bacterial cell division (de Boer *et al.*, 1992; Löwe and Amos, 1998).

Received: December 30, 2022 Accepted: December 29, 2023

Correspondence to tvhai@vnua.edu.vn

Particularly, FtsZ proteins play the role as the pacemaker of the formation of the divisome and the cytokinesis process (Margolin, 2005) as it assembles into proto-filaments to construct a ring-like template (McQuillen and Xiao, 2020). The formation of this ring initiates and facilitates cellular division, enabling a single parent cell to give rise to two offspring cells, while the divisome plays a pivotal role in the constriction of the cell envelope and the generation of new cell wall segments at the division site. FtsZ also has an extended role beyond cellular division where it contributes to determining cell morphology and establishing polarity in certain bacterial species. In a nutshell, the FtsZ protein is indispensable in the orchestration of bacterial cell division, thereby significantly influencing the growth and structural dynamics of bacterial cells. The FtsZ proteins in bacterial species have been reported to share a similar manner with the tubulins in eukaryotic cells. Up until now, information about the FtsZ proteins in various prokaryotic cells, unfortunately, has been unclearly (Pal et al., 2019).

The Lactococcus and Bacillus genus groups are two very common types of bacteria. Firstly, Lactococcus constitutes some of the genera forming the lactic acid bacteria family. This genus has been reportedly used in the food industry (Song et al., 2017) such as in the production of dairy products (Li et al., 2020). On the other hand, Bacillus species signify Grampositive, spore-forming, rod-shaped, and aerobic bacteria (Miljaković et al., 2020). This genus can be isolated from various sources, like soil (mostly), air, water, animal guts, vegetables, and other food items (Elshaghabee et al., 2017). At the molecular scale, the cell division process, particularly the FtsZ proteins of these genus groups, has been not fully described (Pal et al., 2019). Recently, a comprehensive search of the FtsZ proteins from approximately 70 bacterial families (belonging to 40 orders) was performed in order to find out the core set of codons in the coding region of the gene sequence (Pal et al., 2019).

The aims of this study was to comprehensively describe the FtsZ proteins found in the *Lactococcus* and *Bacillus* genus groups.

Materials and Methods

In silico searches of FtsZ proteins in databases

The well-characterized *ftsZ* gene from *Escherichia coli* (strain ATCC 47076) (McQuillen and Xiao, 2020) was used as the seed sequence for comprehensively searching against the sequences of *Lactococcus* and *Bacillus* genera (Loman *et al.*, 2012; Tatusova *et al.*, 2014) available from the NCBI GenBank database (Wheeler *et al.*, 2008). The coding DNA sequences (CDSs) of the FtsZ proteins were then BlastP-ed to obtain the full-length amino acid (aa) sequences.

Analysis of features of the FtsZ proteins

The full-length aa sequences of the FtsZ proteins in the Lactococcus and Bacillus genus groups were applied in the Expasy Protparam portal (Gasteiger et al., 2003; Gasteiger et al., 2005). Particularly, six typical features of the molecules, namely protein sizes (aa residues), protein weights (kilo Dalton, kDa), iso-electric points (pI-s), instability indexes (II-s), aliphatic indexes (AI-s), and grand average of hydropathicity (GRAVY), were identified (Gasteiger et al. 2003). Basically, pI scores of > 7 and < 7 indicated basic and acidic proteins, respectively, while II values of > 41 and < 41suggested unstable and stable proteins, respectively. GRAVY scores below 0 were more likely for hydrophilic proteins, while scores above 0 were more likely for hydrophobic proteins.

Prediction of subcellular localization of the FtsZ proteins

The subcellular localizations of the FtsZ proteins in the Lactococcus and Bacillus genus groups were predicted by using the YLoc portal (Briesemeister al., 2010a; 2010b). et Particularly, the full-length aa sequence of each FtsZ protein was searched against the YLoc (Briesemeister et al., 2010b) to suggest the putative localizations, like the nucleus, cytoplasm, mitochondrion, plasma membrane, extracellular space, endoplasmic reticulum, peroxisome, Golgi apparatus, and vacuole. The probability (%) and confidence scores were used to validate the predictions (Briesemeister et al., 2010b).

Construction of 3D models of the FtsZ proteins

The full-length aa sequences of the FtsZ proteins in the *Lactococcus* and *Bacillus* species were used for the model predictions as previously described (La *et al.*, 2022). Particularly, the Phyre2 tool (Kelley *et al.*, 2015) was applied to analyze the secondary structures of the proteins, including the rates of alpha and beta subunits. Then, the 3D models of the FtsZ proteins in the *Lactococcus* and *Bacillus* species were constructed based on the available structures (Kelley *et al.*, 2015).

Analysis of conserved domains of the FtsZ proteins

The full-length aa sequences of the FtsZ proteins in the *Lactococcus* and *Bacillus* species were applied for alignment using the ClustalX software (Thompson *et al.*, 1997; Thompson *et al.*, 2002). The Pfam domain (Finn *et al.*, 2014; Mistry *et al.*, 2021) was then used to obtain the conserved domain of the bacterial FtsZ proteins (Löwe and Amos, 1998; Silber *et al.*, 2020). The conserved regions found in the FtsZ proteins in the *Lactococcus* and *Bacillus* species were graphically viewed by the BioEDIT software (Hall, 1999).

Results and Discussion

Identification and annotation of the FtsZ proteins in the *Lactococcus* and *Bacillus* genera

In order to screen the FtsZ proteins from the Lactococcus and Bacillus genera, we selected the well-annotated FtsZ protein in E. coli from a previous study (McQuillen and Xiao, 2020) for a comprehensive search against the assemblies of Lactococcus and Bacillus genera (Loman et al., 2012; Tatusova et al., 2014). As shown in Tables 1 and 2, a total of 19 and 22 FtsZ proteins were found in these genus groups, respectively. Particularly, we reported the occurrences of FtsZ proteins in 13 Bacillus species, namely B. anthracis, B. benzoevorans, B. aquiflavi, B. amyloliquefaciens, B. massiliigabonensis, B. carboniphilus, B. vallismortis, B. dakarensis, B. solitudinis, B. paralicheniformis, B. infantis, B. mediterraneensis, and B. methanolicus (Table 1).

Next, we also found information of the FtsZ proteins in Lactococcus sp. For instance, FtsZ proteins were identified and annotated in a variety of Lactococcus species, namely L. allomyrinae, L. chungangensis, L. cremoris, L. formosensis, L. fujiensis, L. garvieae, L. hircilactis, L. hodotermopsidis, L. insecticola, L. lactis, L. nasutitermitis, L. petauri, L. piscium, L. plantarum, L. protaetiae, L. raffinolactis, L. reticulitermitis, L. taiwanensis, and L. termiticola. The detailed information of the FtsZ proteins in Lactococcus sp. has been provided in Table 2. In this study, the CDS and full-length aa sequences from all the FtsZ proteins in the Bacillus and Lactococcus genus groups were then collected for further in silico analyses.

Analysis of conserved domains of the FtsZ proteins

In this study, we analyzed the general characteristics of the FtsZ proteins in the two genus groups using a web-based tool (Gasteiger *et al.*, 2003; Gasteiger *et al.*, 2005). Six features of the proteins, namely molecular lengths and weights, pI, II and AI scores, and GRAVY from the *Bacillus* and *Lactococcus* species, are subsequently provided in **Tables 3 and 4**, respectively.

We found that the majority (18 out of 19) of the FtsZ proteins in the Bacillus genus exhibited sizes of less than 400 aa residues (Table 3). Particularly, the sizes of the FtsZ proteins varied from 376 (in B. carboniphilus) to 410 aa residues (in *B. anthracis*) (Table 3). The molecular masses of the FtsZ proteins in the Bacillus genus ranged from 39.53 (in B. carboniphilus) to 44.15 kDa (in B. anthracis) (Table 3). Next, the pI scores of the FtsZ proteins in the Bacillus genus were all less than 7.0 (Table 3), which suggested that these proteins were acidic. The II scores of all the FtsZ proteins in the Bacillus species were less than 40, ranging from 27.2 (in B. amyloliquefaciens) to 38.7 (in B. infantis) (Table 3). These findings predicted that the FtsZ proteins in the Bacillus genus were stable. Additionally, the AI values of these FtsZ proteins varied from 82.3 (in *B. amyloliquefaciens*) to 95.5 (in В. *benzoevorans*) (**Table** 3). Interestingly, the GRAVY values of the FtsZ

Table 1. Information of the FtsZ proteins found in the Bacillus genus

#	Organism	Strain	ProteinID
1	Bacillus anthracis	V583	GEU27941.1
2	<i>Bacillus</i> sp.	Man26	WP_233314489.1
3	Bacillus sp.	B-jedd	WP_048824400.1
4	<i>Bacillus</i> sp.	-	MBO8176442.1
5	Bacillus benzoevorans	DSM 5391	WP_184522020.1
6	Bacillus sp.	CBEL-1	TDB50557.1
7	Bacillus aquiflavi	3H-10	WP_163242253.1
8	Bacillus amyloliquefaciens	N315	POO69966.1
9	Bacillus massiliigabonensis	Marseille-P2639	WP_102271539.1
10	Bacillus sp.	T33-2	WP_101581273.1
11	Bacillus carboniphilus	SaN35-3	WP_226538420.1
12	Bacillus vallismortis	DSM 11031	WP_010328070.1
13	Bacillus sp.	FJAT-47783	WP_243289962.1
14	Bacillus dakarensis	Marseille- P3515T	WP_077211442.1
15	Bacillus solitudinis	FJAT-45086	WP_100404556.1
16	Bacillus paralicheniformis	Bac48	WP_105978931.1
17	Bacillus infantis	2933tsa1	WP_148950233.1
18	Bacillus mediterraneensis	Marseille-P2366	WP_071459365.1
19	Bacillus methanolicus	PB1	WP_003350300.1

Note: -: No information.

proteins were less than 0, ranging from -0.35 (in *B. anthracis*) to -0.09 (**Table 3**). The hydrophobicity scores of the FtsZ proteins in the *Bacillus* species suggested that these proteins were more likely globular.

As compared to the FtsZ proteins in the Bacillus genus, the FtsZ proteins found in the Lactococcus species were also investigated and found to share similar phenomena (Tables 3 and 4). Briefly, the protein sizes and masses of the FtsZ proteins in the Lactococcus genus varied from 387 (in L. lactis subsp. cremoris TIFN1) to 430 aa residues (in L. hodotermopsidis), and 41.14 (in L. lactis subsp. cremoris TIFN1) to 45.11 kDa (in L. hodotermopsidis), respectively (Table 4). Next, all the identified FtsZ proteins in the 22 Lactococcus species were demonstrated to be acidic (pI scores were less than 7.0) and hydrophilic (GRAVY scores were negative) (Table 4). A variety (eight out of 22) of the FtsZ proteins in the Lactococcus genus were less than 40, which suggested that these proteins were stable, whereas the remaining (14 out of 22) proteins were unstable (**Table 4**). Furthermore, the AI scores of these proteins were found to range from 85.56 (in *L. hircilactis*) to 91.54 (in *L. insecticola*) (**Table 4**).

Previously, the typical characteristics of FtsZ proteins in other bacterial genus groups have also been reported. For example, the sizes and molecular weights of the FtsZ protein found in Bartonella bacilliformis (strain KC583) were recorded to be 593 aa residues and 63.61 kDa, respectively, while the FtsZ protein in Geobacter sulfurreducens (strain PCA) exhibited a length of 384 aa residues and a mass of 40.83 kDa (Pal et al., 2019). Based on a recent report, the protein size and weight of the FtsZ molecule in E. coli (strain ATCC 47076) were found to be 383 aa residues and 40.32 kDa, respectively (McQuillen and Xiao, 2020). In Alcaligenes faecalis subsp. faecalis NCIB 8687, the FtsZ protein exhibited a size of 387 aa residues and a weight of 40.60 kDa(Pal et al., 2019). Interestingly, all the FtsZ

#	Organism	Strain	ProteinID
1	Lactococcus	SK11	WP_011676880.1
2	Lactococcus allomyrinae	1JSPR-7	WP_120772315.1
3	Lactococcus chungangensis	DSM 22330	WP_031366144.1
4	Lactococcus cremoris	MG1363	WP_011835774.1
5	Lactococcus formosensis	NBRC 109475	WP_213496889.1
6	Lactococcus fujiensis	JCM 16395	WP_054639583.1
7	Lactococcus garvieae	IPLA 31405	WP_003133462.1
8	Lactococcus hircilactis	DSM 28960	WP_153496745.1
9	Lactococcus hodotermopsidis	Hs30E4-3	WP_172207956.1
10	Lactococcus insecticola	Hs20B0-1	WP_172357477.1
11	Lactococcus lactis	-	WP_101961763.1
12	Lactococcus lactis subsp. cremoris	MG1363	CAA75616.1
13	Lactococcus lactis subsp. cremoris	TIFN1	EQC86115.1
14	Lactococcus nasutitermitis	NBRC 111537	WP_213534626.1
15	Lactococcus petauri	-	WP_242359400.1
16	Lactococcus piscium	BF1	WP_218724185.1
17	Lactococcus plantarum	NBRC 100936	WP_068164022.1
18	Lactococcus protaetiae	KACC 19320	WP_142767375.1
19	Lactococcus raffinolactis	NBRC 100932	WP_061775091.1
20	Lactococcus reticulitermitis	Rs-Y01	WP_094784078.1
21	Lactococcus taiwanensis	K_LL001	WP_205272043.1
22	Lactococcus termiticola	NtB2	WP_109245985.1

Table 2. Information of the FtsZ proteins found in the Lactococcus genus

Note: -: No information.

proteins found in these organisms were realized to be acidic and hydrophilic because the pI values were less than 7.0 and the GRAVY values were negative, respectively.

Predictions of subcellular localization and construction of 3D models of the FtsZ proteins in the *Lactococcus* and *Bacillus* genus groups

The FtsZ proteins in *Bacillus* were predicted to be distributed in the cytoplasm (**Table 3**). The probability scores were more than 90%, except for the prediction of the FtsZ protein found in *B. amyloliquefaciens* (**Table 3**). The confidence was strong (0.91) to very strong (0.99) (**Table 3**). Similarly, we demonstrated that all the FtsZ proteins found in the *Lactococcus* genus were localized in the cytoplasm with high confidence (**Table 4**). The percentages of probability and confidence scores of the prediction algorithms varied from 96.25 to 98.99%, and from 0.81 (strong confidence) to 0.99 (very strong confidence), respectively (**Table 4**).

Previously, the subcellular localization of the FtsZ proteins in several bacterial species has been reported. Briefly, the FtsZ proteins found in *E. coli* (strain K12) (McQuillen and Xiao, 2020), *Blautia* sp. (strain MCC269), *A. faecalis* (strain NCIB 8687), *B. bacilliformis* (strain KC583), and *Geobacter sulfurreducens* (Pal *et al.*, 2019) were predicted to be localized in the cytoplasm with high confidence levels. Taken together, these findings strongly suggest that the FtsZ proteins in the *Bacillus* and *Lactococcus* species, and perhaps in other bacterial genera as well, are distributed in the cytoplasm.

Next, we analyzed the secondary structures and simulated 3D models of the FtsZ proteins in

FtsZ proteins in Bacillus genus	Protein sizes	Protein weights	pl values	ll values	AI values	GRAVY values	Predicted location	Probability	Confidence
GEU27941.1	410	44.15	4.8	32.8	85.9	-0.35	Cytoplasm	95.43	0.98
WP_233314489.1	382	39.99	5.1	28.4	95.0	-0.09	Cytoplasm	98.75	0.91
WP_048824400.1	378	39.90	5.1	33.3	94.0	-0.10	Cytoplasm	97.86	0.98
MBO8176442.1	380	40.39	5.0	32.1	93.0	-0.17	Cytoplasm	94.03	0.96
WP_184522020.1	379	39.87	5.1	30.9	95.5	-0.09	Cytoplasm	98.45	0.98
TDB50557.1	387	40.81	5.1	33.9	91.5	-0.17	Cytoplasm	98.45	0.98
WP_163242253.1	381	40.17	5.0	29.5	93.5	-0.12	Cytoplasm	98.80	0.97
POO69966.1	390	41.04	4.9	27.2	82.3	-0.23	Cytoplasm	86.51	0.96
WP_102271539.1	381	40.31	5.0	33.8	93.2	-0.15	Cytoplasm	98.58	0.98
WP_101581273.1	385	40.54	4.9	29.4	92.5	-0.16	Cytoplasm	97.86	0.98
WP_226538420.1	376	39.53	4.8	28.6	92.4	-0.12	Cytoplasm	98.41	0.98
WP_010328070.1	382	40.40	5.0	34.2	93.5	-0.19	Cytoplasm	97.52	0.98
WP_243289962.1	380	40.14	5.0	28.1	92.2	-0.12	Cytoplasm	98.40	0.99
WP_077211442.1	380	40.16	5.1	32.0	92.4	-0.15	Cytoplasm	98.40	0.99
WP_100404556.1	380	40.25	4.9	35.0	93.0	-0.18	Cytoplasm	90.44	0.95
WP_105978931.1	377	39.86	5.1	35.8	93.0	-0.20	Cytoplasm	99.39	0.99
WP_148950233.1	388	40.80	5.1	38.7	88.0	-0.22	Cytoplasm	96.40	0.95
WP_071459365.1	385	41.00	5.1	31.8	93.0	-0.17	Cytoplasm	98.80	0.97
WP_003350300.1	379	39.93	5.0	32.6	94.2	-0.11	Cytoplasm	97.86	0.98

Table 3. Characteristics of the FtsZ proteins in the Bacillus genus

Note: Protein size (aa residues), protein weight (kDa), pl - Iso-electric point, II - Instability index, AI - Aliphatic index, GRAVY - Grand average of hydropathicity.

the *Lactococcus* and *Bacillus* species by the Phyre2 web-based platform (Kelley *et al.*, 2015) as previously reported (La *et al.*, 2022). Here, two elements of the secondary structure, namely the alpha-helix and beta-pleated sheets, were the focus. The alpha-helices and beta-pleated sheets of the FtsZ proteins in the *Bacillus* species varied from 0.35 to 0.39, and from 0.18 to 0.20, respectively (**Figure 1A**). This phenomenon was also reported in the FtsZ proteins in the *Lactococcus* genus. Particularly, the alpha-helices of the FtsZ proteins in the *Lactococcus* species ranged from 0.32 to 0.36, whereas the beta-pleated sheets varied from 0.17 to 0.18 (**Figure 1B**).

We found two 3D models, namely 'c2vxyA' (**Figure 2A**) and 'c4dxdA' (**Figure 2B**), representative of the FtsZ proteins in the *Bacillus* species. Particularly, out of the 19 FtsZ proteins found in the *Bacillus* species, 17 had the 'c2vxyA' model and two had the 'c4dxdA'

model. Meanwhile, the FtsZ proteins found in the 22 *Lactococcus* species were predicted to exhibit the 'c2vxyA' model (Figure 2A). Taken together, the construction of the 3D models of the FtsZ molecules could provide a solid foundation for further functional characterization of these proteins in the *Bacillus* and *Lactococcus* genus groups.

Investigation of the core set of conserved domains in the structure of the FtsZ proteins in the Bacillus and Lactococcus genus groups

We analyzed the conserved domains of the FtsZ proteins in the *Lactococcus* and *Bacillus* species by using various software tools (Thompson *et al.*, 1997; Thompson *et al.*, 2002; Finn *et al.*, 2014; Mistry *et al.*, 2021). The multiple alignments of the FtsZ proteins found in the 19 and 22 *Bacillus* and *Lactococcus* species, respectively, and six other bacterial strains were consequently well-described (**Figures 3 and 4**).

FtsZ proteins in	Protein	Protein	pl	П	AI	GRAVY	Predicted	Drobobility	Confidence
Lactococcus genus	sizes	weights	values	values	values	values	location	riobability	
WP_011676880.1	417	44.03	4.54	40.79	86.09	-0.23	Cytoplasm	97.57	0.98
WP_120772315.1	411	43.40	4.58	44.40	88.05	-0.17	Cytoplasm	98.21	0.85
WP_031366144.1	421	44.04	4.49	34.81	89.93	-0.15	Cytoplasm	97.71	0.97
WP_011835774.1	419	44.26	4.54	40.44	87.54	-0.21	Cytoplasm	98.39	0.97
WP_213496889.1	424	44.58	4.51	42.93	85.83	-0.18	Cytoplasm	97.93	0.95
WP_054639583.1	419	44.51	4.64	38.03	88.45	-0.25	Cytoplasm	97.71	0.97
WP_003133462.1	424	44.56	4.50	44.96	85.61	-0.19	Cytoplasm	98.35	0.97
WP_153496745.1	423	44.82	4.65	36.29	85.56	-0.24	Cytoplasm	98.26	0.97
WP_172207956.1	430	45.11	4.52	40.76	89.63	-0.16	Cytoplasm	97.36	0.97
WP_172357477.1	421	43.93	4.42	37.40	91.54	-0.13	Cytoplasm	96.25	0.94
WP_101961763.1	417	44.05	4.55	42.03	86.09	-0.23	Cytoplasm	97.57	0.98
CAA75616.1	419	44.36	4.65	40.35	88.23	-0.22	Cytoplasm	98.99	0.97
EQC86115.1	387	41.14	4.58	41.93	85.97	-0.28	Cytoplasm	98.52	0.99
WP_213534626.1	426	44.94	4.57	36.04	86.08	-0.22	Cytoplasm	98.78	0.81
WP_242359400.1	424	44.57	4.46	40.86	86.06	-0.18	Cytoplasm	97.93	0.95
WP_218724185.1	420	43.91	4.52	40.09	88.71	-0.15	Cytoplasm	97.85	0.95
WP_068164022.1	420	44.13	4.51	34.63	90.98	-0.13	Cytoplasm	97.72	0.93
WP_142767375.1	411	43.42	4.58	41.14	88.30	-0.17	Cytoplasm	98.21	0.85
WP_061775091.1	421	44.01	4.55	35.34	90.40	-0.14	Cytoplasm	96.40	0.94
WP_094784078.1	421	43.91	4.52	34.44	89.48	-0.13	Cytoplasm	96.40	0.94
WP_205272043.1	415	43.85	4.53	41.23	87.69	-0.23	Cytoplasm	98.60	0.92
WP_109245985.1	417	44.05	4.47	40.48	86.09	-0.20	Cytoplasm	98.60	0.96

Table 4. Characteristics of the FtsZ proteins in the Lactococcus genus

Note: Protein size (aa residues), protein weight (kDa), pl - Iso-electric point, II - Instability index, AI - Aliphatic index, GRAVY - Grand average of hydropathicity.

Figure 1. The ratios of alpha and beta subunits in the FtsZ proteins in (A) Bacillus and (B) Lactococcus species

As compared with the typical domains of FtsZ proteins (Löwe and Amos, 1998; Silber *et al.*, 2020) found in the Pfam domain (Finn *et al.*, 2014; Mistry *et al.*, 2021), the FtsZ proteins in

the *Lactococcus* and *Bacillus* species clearly exhibited the existence of five distinct functional regions, namely the N-terminal peptide (NTP) region, a GTP-binding pocket, a C-terminal

Vietnam Journal of Agricultural Sciences

linker (CTL), a C-terminal tail (CTT), and a C-terminal variable region (CTV) (**Figures 3 and 4**).

Particularly, the NTP regions identified in the FtsZ proteins from the Lactococcus and Bacillus genus groups were both reported to contain 25 aa residues (Figures 3 and 4). The NTP regions of these FtsZ proteins were recognized to end with the highly conserved isoleucine (I) residue (Figures 3 and 4). Of interest, the GTP-binding site was the conserved core domain of the FtsZ proteins. This region was specific with the appearance of the seven-aamotif GGGTGTG (G and T meaning glycine and threonine, respectively) (Figures 3 and 4). The CTT region of the FtsZ proteins in the Lactococcus and Bacillus genus groups were recognized to contain approximately 10 aa residues (Figures 3 and 4). Among them, proline (P) and phenylalanine (F) were two highlyconserved aa found in the CTT region of the FtsZ proteins (Figures 3 and 4). Finally, the CTV region was defined as highly variable and harbored several aa residues. We found that two aa residues, arginine-lysine (RK), were highly conserved in the CTV region from the Lactococcus species (Figure 3), while three typical aa residues, leucine-arginine-asparagine (LRN), were specific in the CTV region from the Bacillus species (Figure 4).

Previously, the functional regions of the FtsZ proteins in various microorganism species have also been summarized (Silber et al., 2020). For example, the NTP domain was poorly conserved among various bacterial genera and could contain a variety of dozens of aa residues (Silber et al., 2020). Recent studies also confirmed the ending point of the NTP region with an I residue (Rossmann et al., 1974; Silber et al., 2020). For example, the NTP regions of the FtsZ proteins found in Methanococcus jannaschii and B. subtilis harbored 39 and 13 aa residues, respectively (Löwe, 1998; Raymond et al., 2009). Up until now, the function of this part has been not assigned (Silber et al., 2020). Interestingly, the GTP-binding region of the FtsZ proteins was reported to provide the interface for a head-to-tail polymerization of FtsZ proteins into proto-filaments (Scheffers et al., 2002). Next, the CTV region of the FtsZ protein found in B. subtilis was reported to be highly positively charged with six conserved aa residues (NRNKRG) (Raymond et al., 2009). This region plays an important role in the lateral interaction between FtsZ proteins and proto-filaments. The CTL region is an unstructured domain localized between the GTP-binding site and the CTT/CTV regions. The size of this region has been reported to be highly variable, up to 330 aa residues (Vaughan et al., 2004). Recently, two substrate

Figure 2. 3D models of the FtsZ proteins in the Bacillus and Lactococcus genus groups, namely (A) 'c2vxyA' and (B) 'c4dxdA'

Figure 3. Functional regions of the the FtsZ proteins found in the Lactococcus genus group

Figure 4. Functional regions of the FtsZ proteins found in the Bacillus genus group

binding sites, namely the nucleotide-binding domain and the inter-domain binding sites, on the FtsZ proteins were well-characterized in Staphylococcus epidermidis (Vemula et al., 2023). The presence of these domains in the FtsZ proteins significantly made them perfect candidates for the development of broadspectrum inhibitors (Battaje et al., 2023; Di Somma et al., 2023). Next, a comprehensive search revealed a total of eight and 113 FtsZ proteins in diverse archaea and bacteria, respectively (Makarova and Koonin 2010). Among them, the signature GTP-binding loop sequence, as well-characterized as GGGTGTG in the Bacillus and Lactococcus genera (Figures 3 and 4), were recognized to be the GTPase loop, which plays a crucial role in the hydrolysis of GTP and the subsequent disassembly of the protein (Makarova and Koonin, 2010).

Conclusions

In this study, a total of 19 and 22 FtsZ proteins were reported in the *Bacillus* and *Lactococcus* genus groups, respectively. Our analysis indicated that the FtsZ proteins in the *Bacillus* and *Lactococcus* species were slightly variable in size, mass, and II and AI scores, while these proteins were acidic and hydrophilic. All the FtsZ proteins in the *Bacillus* and *Lactococcus* genus groups were predicted to be localized in the cytoplasm. The multiple alignments obviously indicated that the conserved domain of the FtsZ proteins contained five distinct regions.

Acknowledgments

The authors extend their gratitude to DOST-PCAARRD for the provision of project funds to carry out this research endeavor and to Central Mindanao University as the implementing agency.

References

- Battaje R. R., Piyush R., Pratap V. & Panda D. (2023). Models versus pathogens: how conserved is the FtsZ in bacteria? Bioscience Reports. 43(2): BSR20221664.
- Briesemeister S., Rahnenfuhrer J. & Kohlbacher O. (2010a). Going from where to why--interpretable

prediction of protein subcellular localization. Bioinformatics. 26(9): 1232-1238.

- Briesemeister S., Rahnenfuhrer J. & Kohlbacher O. (2010b). YLoc--an interpretable web server for predicting subcellular localization. Nucleic Acids Research. 38(Web Server issue): W497-502.
- de Boer P., Crossley R. & Rothfield L. (1992). The essential bacterial cell-division protein FtsZ is a GTPase. Nature. 359(6392): 254-256.
- Di Somma A., Canè C., Rotondo N. P. & Cavalluzzi M. M. (2023). A comparative study of the inhibitory action of berberine derivatives on the recombinant protein FtsZ of *E. coli*. International Journal of Molecular Sciences. 24(6): 5674.
- Elshaghabe F. M. F., Rokana N., Gulhane R. D., Sharma C. & Panwar H. (2017). *Bacillus* as potential probiotics: Status, concerns, and future perspectives. Front Microbiology. 8. DOI: 10.3389/fmicb.2017.01490.
- Finn R. D., Bateman A., Clements J., Coggill P., Eberhardt R. Y., Eddy S. R., Heger A., Hetherington K., Holm L., Mistry J., Sonnhammer E. L., Tate J. & Punta M. (2014). Pfam: the protein families database. Nucleic Acids Research. 42(Database issue): D222-D230.
- Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R. D. & Bairoch A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research. 31(13): 3784-3788.
- Gasteige E., Hoogland C., Gattiker A., Wilkins M. R., Appel R. D. & Bairoch A. (2005). Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook, Springer: 571-607.
- Hal T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 41(95-98.
- Kelle L. A., Mezulis S., Yates C. M., Wass M. N. & Sternberg M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols. 10(6): 845-858.
- L H. V., Chu H. D., Tran C. D., NguyenK . H., Le Q. T. N., Hoang C. M., Cao B. P., Pham A. T. C., Nguyen B. D., Nguyen T. Q., Nguyen L. V., Ha C. V., Le H. T., Le H. H., Le T. D. & Tran L. P. (2022). Insights into the gene and protein structures of the CaSWEET family members in chickpea (*Cicer arietinum*), and their gene expression patterns in different organs under various stress and abscisic acid treatments. Gene. 819: 146210. DOI: 10.1016/j.gene.2022.146210.
- Li W., Ren M., Duo L., Li J., Wang S., Sun Y., Li M., Ren W., Hou Q., Yu J., Sun Z. & Sun T. (2020). Fermentation characteristics of *Lactococcus lactis* subsp. *lactis* isolated from naturally fermented dairy products and screening of potential starter isolates. Frontiers in Microbiology. 11. DOI: 10.3389/fmicb.2020.01794.

- Loman N. J., Constantinidou C., Chan J. Z., Halachev M., Sergeant M., Penn C. W., Robinson E. R. & Pallen M. J. (2012). High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nature Review Microbiology. 10(9): 599-606.
- Löwe J. (1998). Crystal structure determination of FtsZ from *Methanococcus jannaschii*. Journal of Structural Biology. 124(2-3): 235-243.
- Löwe J. & Amos L. A. (1998). Crystal structure of the bacterial cell-division protein FtsZ. Nature. 391(6663): 203-206.
- Makarova K. S. & Koonin E. V. (2010). Two new families of the FtsZ-tubulin protein superfamily implicated in membrane remodeling in diverse bacteria and archaea. Biology Direct. 5(1): 33.
- Margolin W. (2005). FtsZ and the division of prokaryotic cells and organelles. Nature Reviews Molecular Cell Biology. 6(11): 862-871.
- McQuillen R. & Xiao J. (2020). Insights into the structure, function, and dynamics of the bacterial cytokinetic FtsZ-ring. Annual Review of Biophysics. 49: 309-341.
- Miljaković D., Marinković J. & Balešević-Tubić S. (2020). The significance of *Bacillus* spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms. 8(7): 1037.
- Mistry J., Chuguransky S., Williams L., Qureshi M., Salazar G. A., Sonnhammer E. L. L., Tosatto S. C. E., Paladin L., Raj S., Richardson L. J., Finn R. D. & Bateman A. (2021). Pfam: The protein families database in 2021. Nucleic Acids Research. 49(D1): D412-D419.
- Pal A., Saha B. K. & Saha J. (2019). Comparative in silico analysis of *ftsZ* gene from different bacteria reveals the preference for core set of codons in coding sequence structuring and secondary structural elements determination. PLoS One. 14(12): e0219231.
- Raymond A., Lovell S., Lorimer D., Walchli J., Mixon M., Wallace E., Thompkins K., Archer K., Burgin A. & Stewart L. (2009). Combined protein construct and synthetic gene engineering for heterologous protein expression and crystallization using Gene Composer. BMC Biotechnol. 9: 37.
- Rossmann M. G., Moras D. & Olsen K. W. (1974). Chemical and biological evolution of a nucleotidebinding protein. Nature. 250(5463): 194-199.

- Scheffers D. J., de Wit J. G., den Blaauwen T. & Driessen A. J. (2002). GTP hydrolysis of cell division protein FtsZ: evidence that the active site is formed by the association of monomers. Biochemistry. 41(2): 521-529.
- Silber N., Matos de Opitz C. L., Mayer C. & Sass P. (2020). Cell division protein FtsZ: from structure and mechanism to antibiotic target. Future Microbiology. 15(9): 801-831.
- Song A. A.-L., In L. L. A., Lim S. H. E. & Rahim R. A. (2017). A review on *Lactococcus* lactis: from food to factory. Microbial Cell Factories. 16(1): 55.
- Tatusova, T., Ciufo S., Fedorov B., O'Neill K. & Tolstoy I. (2014). RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Research. 42(Database issue): D553-D559.
- Thompson, J., Gibson T., Plewniak F., Jeanmougin F. & Higgins D. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research. 25: 4876-4882.
- Thompson, J. D., Gibson T. J. & Higgins D. G. (2002). Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics. 2: 1-22.
- Vaughan, S., Wickstead B., Gull K. & Addinall S. G. (2004). Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. Journal of Molecular Evolution. 58(1): 19-29.
- Vemula D., Maddi D. R. & Bhandari V. (2023). Homology modeling, virtual screening, molecular docking, and dynamics studies for discovering Staphylococcus epidermidis FtsZ inhibitors. Frontiers in Molecular Biosciences. 10: 1087676.
- Wheeler D. L., Barrett T., Benson D. A., Bryant S. H., Canese K., Chetvernin V., Church D. M., DiCuccio M., Edgar R., Federhen S., Feolo M., Geer L. Y., Helmberg W., Kapustin Y., Khovayko O., Landsman D., Lipman D. J., Madden T. L., Maglott D. R., Miller V., Ostell J., Pruitt K. D., Schuler G. D., Shumway M., Sequeira E., Sherry S. T., Sirotkin K., Souvorov A., Starchenko G., Tatusov R. L., Tatusova T. A., Wagner L. & Yaschenko E. (2008). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research. 36(Database issue): D13-D21.