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Abstract 

In this study, we investigated one of the most popular stochastic 

volatility pricing models, the Heston model, for European 

options. This paper deals with the implementation of a finite 

difference scheme to solve a two-dimensional partial differential 

equation form of the Heston model. We explain in detail the 

explicit scheme for the Heston model, especially on the 

boundaries. Some simple ideas to modify the treatment on the 

boundaries, which leads to a lower computational cost, are also 

stated. The paper also covers comparisons between the explicit 

solution and the semi-analytical solution.  
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Introduction 

In recent years, financial markets containing derivatives have 

become more and more popular throughout the world. Derivatives 

were introduced in the Vietnamese equity market in 2017 and 

attracted a lot of attention. Options are derivative products that 

give the owner the right, but not the obligation, to buy or sell 

(depending on the type of option) an underlying asset at a stated 

price within a specific timeframe. One of the most concerning 

problems for traders is finding the fairest price for an option to 

incorporate into their strategies to maximize profits. 

In the early 1970s, Fisher Black and Myron Scholes (Black-

Scholes, 1973) derived an option pricing model that played an 

essential role in the development of modern derivatives finance. 

They used a partial differential equation to obtain values for 

European calls and put options on the stock. The model is 

computationally simple and quickly became one of the most 

popular models used to determine the value of an option.  
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However, the assumptions made in the 

Black-Scholes model are rather restrictive. In 

particular, the Black-Scholes model assumes that 

the underlying asset price follows a geometric 

Brownian motion with a fixed volatility. The 

1970s and 1980s observed many significant 

extensions of the model (Hull & White, 1987; 

Stein & Stein, 1991; Heston, 1993; Bates, 1996; 

Heston, 1997). Among the stochastic volatility 

extensions of the well-known Black-Scholes 

model, the Heston model, developed by Steven 

Heston in 1993 (Heston, 1993) is the most widely 

used. 

The Heston model assumes that the volatility 

 v t  follows a stochastic process, which is a 

crucial improvement in comparison with the 

Black-Scholes model. According to Heston 

(1993), the price of an option ( , , )U S v t  must 

satisfy a two-dimensional convection-diffusion 

partial differential equation (PDE) 

 

2 2 2
2 2

2 2

1 1

2 2

( ) ( , , ) 0.

U U U U
vS vS v

t S S v v

U U
rS v S t v rU

S v

 

  

   
  

    

 
     

 

 

In the model above, there are several 

parameters that we need to determine and they 

will be introduced in more detail in the next 

section. Similar to the Black-Scholes case, these 

parameters can be calibrated using market data. 

This step involves big data collection and 

estimation methods. We also need to introduce 

the initial condition and boundary conditions for 

the Heston equation, which will be different 

depending on the options type. These conditions 

are also discussed below. In our work, we focus 

on European options. As in Heston (1993), the 

closed-form solution exists in an integral form, 

which is reviewed after the introduction of the 

model. For the other types of options, the 

analytical solutions are not expected to have 

explicit formulas.  

Even though the closed-form solution exists, 

it appears in a proper integral containing complex 

functions. It leads to difficulties in computing the 

Heston solution. Therefore, a numerical method 

is usually used. Before reviewing the literature 

about PDE-based numerical methods, we want to 

mention that despite its slow process, the Monte 

Carlo method is also one of the most widely used 

numerical techniques for option pricing 

problems in general and for the Heston model in 

particular (Kahl & Jäckel, 2006; Lord et al., 

2010). An advantage of the PDE representation 

is that this type of partial differential equation is 

well studied in the literature and many numerical 

methods have been developed to solve them. 

Since the Heston equation is a parabolic PDE, the 

standard finite difference schemes are quick 

approaches (Thomas, 1995; Hull, 2012; Rouah, 

2013). Here, the explicit method is a popular 

approach due to its simplicity. However, the 

method requires a large number of time steps. 

Many authors instead use the implicit method or 

alternative implicit method (Douglas & 

Rachford, 1956; Peaceman & Rachford, 1955; 

Craig & Sneyd, 1988; Hundsdorfer, 2002; Hout, 

2007; During & Miles, 2017) which do not limit 

the number of time steps but require at each time 

step the solution of large sets of equations. Other 

authors follow the ideas of the splitting method 

as a combination of operator splitting and 

iterative methods, and transform a 2-

dimenstional problem into quasi 1-dimensional 

ones (Safaei et al., 2018; Li & Huang, 2020). 

Alternatively, one can use the finite elements 

method (FEM) for the valuation of European 

options as in the papers of Winkler et al. (2001) 

or Chen et al. (2014). The FEM method is more 

complicated to implement but it has an advantage 

that it works for exotic options as well. 

In our work, we expect to apply an effective 

method to determine the price of options in the 

developing Vietnamese derivative market. Since 

the Vietnamese derivative market is in its first 

steps of development, we chose the Heston 

model with a simple European option type to 

simulate. We first reviewed the numerical 

methods, which mostly depend on a Fourier 

transform, to deal with the implementation of the 

Heston solution (Rouah, 2013). In addition, we 

also followed one of the effective numerical 

methods to solve the Heston problem. Since the 

explicit finite difference method has an 

advantage of simplicity and it works well for 

parabolic PDEs if the stability condition is 

satisfied, we chose the explicit method and 
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clearly showed how it works for the Heston 

model. Even though the approach is classical, we 

showed the schemes in every detail for this 

specific problem. A disadvantage of the explicit 

method is the requirement for the number of time 

steps. One of the main points in our work is the 

presentation of some ideas to modify the 

treatments on the boundaries specified in the 

remark of explicit finite difference of the Heston 

model, which leads to a more effective result in 

practice in the sense that the number of time steps 

is reduced, the size of the consideration domain 

is smaller, and at the same time, lower relative 

errors are obtained as shown in Table 6. The 

results are implemented in the Python 

programming language and we tested the 

accuracy of the method by comparisons with the 

Heston solution. 

The structure of this paper is as follows. 

Firstly, we will review the Heston model and its 

closed-form solution given by Heston (1993). 

Secondly, we explain in detail the explicit 

scheme. Next, the algorithms to compute the 

Heston solution and explicit solution are 

discussed. We also include remarks about some 

ideas of the treatments on the boundaries. We 

show the comparisons of the explicit solution, 

explicit solution with the new treatments on the 

boundaries, and the Heston solution in the next 

section. We then provide further discussions 

about the stability and the rate of convergence. 

Finally,  the last section covers the conclusion of 

all our work. 

The Heston Model For Option Pricing 

IoT-based hardware  

As in the Black-Scholes model, the behavior 

of options on assets is assumed to follow the 

stochastic differential equation 

(2.1) 1( ) ( ),dS Sdt v t Sdz t   

where S  is the price of the underlying asset 

at time t ,   is the risk-free interest rate,
 

( )v t  is 

the variance at time t , and 1( )z t  is a geometric 

Brownian motion. In the Heston model, the 

volatility satisfies 

(2.2)   2( ) ( ) ( ) ( ),dv t v t dt v t dz t      

where 
2( )z t  is another Brownian motion,

 
is the reversion rate,   is the reversion level, and 

  is the volatility of the variance process. The 

correlation between the two Brownian motions is 

 , i.e,  

(2.3)         
1 2( ) ( ) .dz t dz t dt  

Following the method that works for the 

Black-Scholes model, with the help of Ito's 

lemma, one can demonstrate that the price of an 

option ( , , )U S v t  must satisfy the partial 

differential equation (Heston, 1993; Hull, 2012) 

(2.4)   

 

2 2 2
2 2

2 2

1 1

2 2

( ) ( , , ) 0.

U U U U
vS vS v

t S S v v

U U
rS v S t v rU

S v

 

  

   
  

    

 
     

 

 Here the term ( , , )S v t  represents the price 

of volatility risk and is independent of the 

particular asset. In Heston (1993), the author also 

proposed that a European call option with strike 

price   and maturing at time T  satisfies 

equation (2.4) with the boundary conditions and 

initial condition 

(2.5)  

( , , ) max(0; ),

(0, , ) 0,

( , , ) 1,

( ,0, ) ( ,0, ) ( ,0, )

( ,0, ) 0,

( , , ) .

U S v T S K

U v t

U
v t

S

U U
rS S t S t rU S t

S v

U
S t

t

U S t S



 




 



 
 

 


 


 

 

Equations (2.4) and (2.5) are the governing 

equations for the Heston model. It is an extension 

of the Black-Scholes model in the sense that the 

behavior for the volatility process is assumed to 

be stochastic instead of being a constant. Note 

that the coefficients of the model need to satisfy 

the so-called Feller condition, 
22 / ( ) 1   . 

Throughout this work, we will consider the 

problems (2.4) and (2.5) to find the price of a 

European call option. Without a loss of 

generality, we can assume that 0.   
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The closed-form solution of the Heston model 

By analogy with the Black-Scholes model, 

in Heston  (1993), the author derived a closed-

form solution to the problems (2.4) and (2.5) as 

follows. The solution has the form 

(2.6) ( )

1 2( , , ) ,r T tU S v t SP Ke P    

where  

(2.7) ln

0

( , , ;ln )

( , , ; )1 1
Re .

2

j

i K

j

P x v T K

e f x v T
d

i

 


 






 
  

  


 

Here jf
 
is the characteristic function given 

by 

(2.8) 
( ; ) ( ; )

( , , ; ) ,j jC T t D T t v i x

jf x v t e
  


   

  

and 

(2.9)                                                                          

2
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( ) 2ln ,
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1
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


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And finally,  

  

2 2 2

,

1,
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,

( ) (2 ),

1
1,

2

1
2.

2

j

j j

j

j j

j j j

j

a

if j
b

if j

b i d
g

b i d

d i b u i

if j

u

if j
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





   



 
 



 


 

   




 
 


 

Since the integrand in (2.7) decays rapidly, it 

is known that the integral is convergent and 

numerical computation of (2.6) is available. In 

our work, we will take the solution of the form 

(2.6) as the reference solution to show the 

accuracy of the numerical scheme. 

A Finite Difference Scheme for the 
Heston Model 

In this section, we will discuss finite 

difference schemes to solve (2.4) and (2.5) (when 

0)  numerically in the domain  

     max max0, 0, 0, .S V T   

Explicit finite difference method 

Since equation (2.4) is a partial differential 

equation of Parabolic type, we can follow the 

classical finite difference method to solve (2.4) 

together with the conditions in (2.5). 

 Consider a discrete domain and build a mesh 

by choosing a S -step size S a v -step size v  

and a time step size t . Assume that the mesh 

contains ( 1) ( 1)N M    space grid points 

(corresponding to S  direction and v direction) 

and H time steps. Each grid point in the mesh is 

denoted by ( , ) ( , )i jS v i S j v   . The value of the 

function U at the grid point ( , )i jS v  and at the 

time level nt n t   is approximated by ,

n

i jU . 

 Then, we use the following center difference 

approximations. 

(3.1)    

1, 1,

, 1 , 1

2
1, , 1,

2 2

2
, 1 , , 1

2 2

2

1, 1 1, 1 1

( , , ) ,
2

( , , ) ,
2

2
( , , ) ,

( )

2
( , , ) ,

( )

( , , )

n n

i j i j

i j n

n n

i j i j

i j n

n n n

i j i j i j

i j n

n n n

i j i j i j

i j n

i j n

n n

i j i j i

U UU
S v t

S S

U UU
S v t

v v

U U UU
S v t

S S

U U UU
S v t

v v

U
S v t

S v

U U U

 

 

 

 

    




 




 

 


 

 


 



 

 


, 1 1, 1
.

4

n n

j i jU

S v

  

 

 

 We also use the forward difference for the 

time derivative. Since we solve the Heston 

equation starting from time t T  to time 0t  , 
the forward difference for the time derivative has 

the form 
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1

, ,
( , , ) .

n n

i j i j

i j n

U UU
S v t

t t




 
 

Substituting the finite differences into (2.4) 

we have an approximation equation 

 (3.2)    

1

, , 1, , 1,2

2

1, 1 1, 1 1, 1 1, 1

, 1 , , 1 1, 1,2

2

, 1 , 1

,

21

2 ( )
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i j i j i j i j
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n n n n n

i j i j i j i j i j
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i j i j n

j i j

U U U U U
S v

t S

U U U U
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U U U U U
v rS

v S

U U
v rU

v




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

 

       

   

 

  


 

  


 

  
 

 


   



 

The problem is to find the approximations 
1

,

n

i jU 

 at the time step 1n   and at every grid 

point ( , )i jS v  when we already know the 

neighbor values at the previous time step n . 

Thus, in equation (3.2), only the value 
1

,

n

i jU 

 is 

the unknown. Equation (3.2) immediately leads 

to  

(3.3)                       
 

1

, , ,

, 1, 1 1, 1 1, 1 1, 1

, 1, , 1, , , 1 , , 1.

n n

i j i j i j

n n n n

i j i j i j i j i j

n n n n

i j i j i j i j i j i j i j i j

U A U

B U U U U

C U D U E U F U



       

   



     

   

     

        where 

(3.4)    

2 2

,

,

2

,

2

,

2

,

2

,

1 ,

,
4

,
2

,
2

( )
,

2

( )
.

2

i j j

i j

j

i j

j

i j

j

i j

j

i j

t
A i v t j r t

v

ij
B t

i v ri
C t

i v ri
D t

j v
E t

v

j v
F t

v





  

  


     



 


 


 

 
 



 
 



 

The formula (3.3) is the explicit scheme for 

the Heston equation. Note that 

, , , , , ,, , , , ,i j i j i j i j i j i jA B C D E F  do not depend on the 

time step n  and can be computed independently. 

It is easy to see that the value 
1

,

n

i jU 

 depends on 9 

values at the time step n , namely  

, 1, 1, , 1 , 1 1, 1

1, 1 1, 1 1, 1

, , , , , ,

, , .

n n n n n n

i j i j i j i j i j i j

n n n

i j i j i j

U U U U U U

U U U

     

     

 

Now, we will explain in detail the treatments 

on the boundaries. The conditions on 0S   and 

v   as 

(0, , ) 0,

( , , ) ,

U v t

U S t S



 
 

are Dirichlet boundary conditions, and 

provide no difficulty.   

For the condition on the boundary S   , 

we have  

 (3.5)          ( , , ) 1
U

v t
S


 


. 

With this Newmann boundary condition, one 

can use the first-order approximation to get 

1 1

, 1,

n n

N j N jU U S 

  . 

However, we can use other ideas to get a 

higher order of approximation. In the first 

direction, we can use an extra grid point 

1( , )M jS v  to compute the value 
1

,

n

N jU 

 at each 

time step. More specifically, at the time step n , 

using the forward difference in the S   direction, 

we denote
 

1, , .n n

N j N jU u S    

Then, at the time step 1n  , the value 
1

,

n

N jU 

 

can be computed by (3.3). Another idea is using 

the second-order one-sided approximation 

(3.6)       

  2, 1, ,4 3
, ,

2

n n n

i j i j i j

i j n

U U UU
S v t

S S

  


 
. 

In our work, we use the second idea, and by 

substituting (3.6) to (3.5), we obtain 

(3.7)  
2, 1,

,

4 2

3

n n

N j N jn

N j

U U S
U

    
 . 

Finally, we need to deal with the most 

complicated condition on the boundary 0v  , 
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(3.8) 

( ,0, ) ( ,0, )

( ,0, ) ( ,0, ) 0.

U U
rS S t S t

S v

U
rU S t S t

t


 


 


  



 

At the grid points 0( , )iS v , when 0j  , there 

is no value , 1 1, 1,n n

i j i jU U   . Thus, we use a second-

order one-sided approximation again for the 

boundary condition 0v  , 

(3.9)
, 1 , , 24 3

( , , ) .
2

n n n

i j i j i j

i j n

U U UU
S v t

v v

  


 
 

Using this difference approximation, the 

condition (3.8) can be rewritten in the 

approximation form 

(3.10)       

1,0 ,0 ,1 ,0 ,2

1

,0 ,0

,0

4 3

2

0.

n n n n n

i i i i i

n n

i in

i

U U U U U
rS

S v

U U
rU

t





  


 


  



 

Therefore, we have an explicit formula for 

the boundary 0v   as 

(3.11)
1

,0 ,0 1,0 ,1 ,2(4 ),n n n n n

i i i i i i i iU PU QU R U U

     

where 

(3.12) 

3
1 ,

2

,

.
2

i

i

i

t
P r t ri t

v

Q ri t

t
R

v






     



 






 

At this step, the full problem of the Heston 

model for the European call option has been 

solved numerically by a finite difference explicit 

scheme. Our discussion above already covers the 

classical approach for this specific problem, 

moreover, we also clearly show the treatments on 

the boundaries.  

A discussion on the analysis of the explicit 

method 

Consistency  

With the help of the Taylor series (Thomas, 

1995; Hull, 2012), one can conclude that the 

explicit scheme is  
2 2( , ,( ) )t S v    . Thus, the 

scheme is consistent. 

Stability  

Following the standard Von Neumann 

analysis using Fourier techniques, the explicit 

scheme is conditionally stable. As in Sensen 

(2008), we take 

(3.13)    
2 2

1
.

max

t
N V M r

 
 

 

The condition for stability is very important 

to make sure that the scheme works. This is also 

one disadvantage among the many advantages of 

the explicit scheme. 

Convergence  

The convergence of this scheme is 

guaranteed by the Lax equivalence theorem. The 

basic idea is that, if a scheme is consistent, it is 

convergent when it is stable (Thomas, 1995). 

Thus, when the stability condition is satisfied, the 

explicit scheme is convergent. 

Numerical Algorithms and Python 
Implementation 

In our work, we will use the Heston solution 

of the form (2.6) as the reference solution. Since 

the closed-form solution (2.6) appears in an 

integral form, it also needs a numerical 

computation to find the analytical solution. Then, 

we will implement the explicit scheme for the 

Heston model. 

Semi-analytical solution of the Heston model 

The Fourier inversion transformation (2.7) is 

the main point in the numerical implementation 

of the Heston solution provided that the 

characteristic function is known. To fix the first 

problem, we have to truncate the semi-infinite 

integral to a finite one. In this algorithm, we chose 

a maximum level 
max

max

max 1000;
Q

U
v T

  
  

  

 

due to a suggestion in the application as in 

Schmelzle (2010). Schmelzle (2010) also 

discusses other choices of maxU . The other 

problem is the fact that the formula (2.7) requires 
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integrating the characteristic function jf , which 

is typically oscillating and causes the instability 

of the numerical scheme. Following a simple 

approach in Lord and Kahl (2007), we can 

replace jg  in (2.7) with 

(4.1)        
j j

j

j j

b i d
g

b i d





 


 
, 

namely, we just switch the minus and the 

plus signs in front of the jd . Lord and Kahl 

(2010) proved that with this modification, the 

numerical scheme to compute the options price is 

stable. 

We will implement the Heston solution 

numerically as follows. 

 (1) Define a mesh on the space domain 

   max max0, 0, .S V  

 (2) Define a maximum level maxU  to 

compute the integral numerically. 

 (3) At each grid point ( , )i jS v  of the mesh, 

compute 

The real coefficients , ,a b u  as in (2.10), 

The complex coefficients ,d g  as (2.10) and 

(4.1), 

The coefficients ,C D  of the characteristic 

function as in (2.9), 

The integrand of (2.7), 

The approximation of 1 2,P P  using (2.7) and 

numerical integration with   varying from 0  to 

maxU , and 

The approximation of ,( ,0)i jU S v  by (2.6). 

We use the following parameters, as chosen 

in Sensen (2008), to implement the semi-

analytical solution of the Heston model.  

Figure 1 shows the result of the Heston 

solution with the parameters as in Table 1. 

The implementation was produced in Python 

programming language. We have made use of the 

Numpy and Scipy libraries together with the 

cmath module which is very convenient when 

dealing with complex numbers as well as 

integration. 

Explicit finite difference solution of the Heston 

model 

The algorithm of the explicit scheme to find 

the approximation of the European call option via 

the Heston model is straight forward from the 

explicit scheme in the previous section . We also 

use the parameters as in Table 1. 

Consider a discrete domain as shown in the 

previous section. Note that we need to choose a 

suitable time step t  such that the scheme is 

stable as in (3.13). In our work, we solve the 

problem in the domain 

       , , 0,200 0,1 0,1S v t    . 

We also take 5, 0.05S v     with varying 

time step t . 

Starting at time t T , using the initial 

condition, the values at grid points are defined by  

 0

, 0( , , ) max 0,i j i j iU U S v t T S K    . 

Figure 2 shows the initial surface. 

Then, we compute the coefficients in (3.3), 

(3.7), and (3.11). At each time step, we will do as 

follows. 

(1) For the points in the interior domain 

(without the boundary), the value 

 1

, 1, ,n

i j i j nU U S v t

 , where  1 1nt T n t     , 

is computed by (3.3), 

(2) Compute the value 
1

,

n

N jU 

 
by (3.7), 

(3) Set the value 
1

0, 0n

jU   , 

(4) Set the value  1

,

n

i MU S i  , 

(5) Compute the value 
1

,0

n

iU 

  
by (3.11), and 

(6) Replace ,

n

i jU
 
with 

1

,

n

i jU 

 
and return to the 

loop of time. 

The results of the explicit method are given 

in Figure 3 below. 

Moreover, we also implement the explicit 

solution of the Heston model with the parameters 

as presented in Table 2.  

The parameters in a real model can be 

determined using market data. This work 

requires a  big  data  collection  and  an  efficient 
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Table 1. The parameters for the Heston model based on Sensen (2008) 

  r        T  K  

0.8  0.03  0.2  2  0.3  1  100  

 

Figure 1. The semi-analytical solution of the Heston model with parameters in Table 1 

 
Figure 2. The initial surface of the Heston model with parameters as in Table 1 

 

estimation method. The problem of finding the 

parameters stands in other interesting fields and 

is not covered in our work. However, we expect 

to deal with this problem in the future as we 

apply the results to the Vietnamese derivative 

market. Here, the parameters in Table 2 are the 

ones estimated in Yang (2013) for the Heston 

model with the price the Google Inc. company 

recorded on April 6, 2013. We tried to solve the 

problem with a several values for  expire  time T    

and strike prices K . Figure 4 shows the results 

for 0.112328767T   and 510K  . 

Remarks 

(1) It turns out that the choice of t
 

is 

important to make the scheme stable. With the 

suggestion (3.13), we choose / 5000t T 
 
and 

/ 8000t T  for the two results shown in Figure 

3 and Figure 4, respectively. 
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Table 2. The parameters for the Heston model based on Yang (2013) 

  r        

0.5090  0.000151644  0.0536  2.0402  0.4675  

 
Figure 3. The explicit result of the Heston model with the parameters as in Table 1 

 
Figure 4. The explicit result of the Heston model with the parameters as in Table 2 

(2) Since the boundary conditions when 

v 
 
and S 

 
stated for large values of v  

and S , we need to take a bigger domain than the 

domain of consideration. In our work, we choose 

the space domain    0,300 0,1.2 for the first 

case and    0,1000 0,0.12
 
for the second case. 

(3) A large number of grid points in the space 

domain enlarges the number of time steps, but it 

is expected that the domain of consideration 

should  be  as  small  as  possible.   One   of   the  

simplest ideas is that we can modify step (4) by 

setting 
1 1

, , 1

n n

i M i MU U 

  and modify (3.7) by 

2, 1,

,

4 2
,

3

0 1

n n

N j N jn

N j

U U S
U





    


 

 

or consider that the price does not change 

when it is large enough, and the change of the 

price in the interior domain is smaller than the 

change on the boundary. In practice, the results 

are better but the domain can be a bit smaller than 
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the original treatment. In our result, we choose 

0.9  , which says that the change of the price 

in the interior domain is “a bit” smaller than the 

change on the boundary. 

All the numerical solutions are implemented 

in Python language with the help of the Numpy 

library, which provides a very powerful 

environment to work with arrays and vectors. 

Note that since the coefficients (3.3), (3.7), and 

(3.11) are independent of the time t , we compute 

them outside the time loop and employ a lower 

computation time. 

Comparisons 

We will take the Heston solution as the 

reference solution to compare. Let us take the 

first case to look at the errors in more detail. 

Figure 5 below shows the price surfaces given 

by both the Heston formula and the explicit 

scheme in the same coordinate system. The 

colored surface represents the explicit result, 

while the green mesh represents the Heston 

solution. 

We also cut through the surfaces by the plane 

1v   to see the differences between two graphs 

as shown in Figure 6, where the higher green 

graph represents the explicit result and the lower 

purple graph represents the Heston solution. 

Figure 6 shows a small difference between the 

Heston solution and the explicit solution. 

It is easy to see that the time step size t
  

strongly impacts the result. When t
 
is big, the 

scheme is unstable, and the error blows up as 

shown in Table 3. In contrast, when t
 
is small 

enough, the scheme seems stable with the error 

as illustrated in Table 4. 

However, even though we expected that the 

error tends to 0  as 0t  , it seems that the 

convergence is very slow and the error has small 

differences when t  varies from 
1

1500
 to 

1

20000
.  The relative error is given by 

Error
L

L
U





.  

As mentioned in the previous section, we 

need to use a bigger domain than the original one 

to cover the boundary condition when S   

and v  . To obtain a better error, we extend 

the domain of consideration to

   ( , ) 0,300 0,1.2S v   . The results are given in 

Table 5 below. 

From the tables, we can see that the scheme 

has a smaller error when the size of the domain 

increases. We also can see that the error is getting 

smaller as time step 0t   but the process is 

slow (first-order in time). On the other hand, the 

convergence is much faster when the space steps 

tend to 0 (second-order in space). However, if we 

take the space steps smaller, we need to take the 

time step extremely small due to the stability 

condition. It is a main problem of the explicit 

method in spite of its simplicity. As seen in 

Table 5, with the extension domain, we need to 

take the time step from 
1

7000
t  .  

If we use a modification by setting 
1 1

, , 1

n n

i M i MU U 

  and  

2, 1,

,

4 2
, 0 1,

3

n n

N j N jn

N j

U U S
U




    
   we 

can consider a much smaller extension domain of 

S  as  0,225S  . As can be seen in Table 6, we 

obtain a smaller error in comparison with the 

ones in Table 5. Moreover, the time steps t  are 

much smaller, starting from 
1

2000
t  . Indeed, 

we can use the time steps as in Table 4.  

Therefore, our modification helps to reduce 

the size of the S   domain as well as the number 

of time steps, which gives a lower computational 

cost. The results are also better in the sense that 

the errors are reduced. 

We also tried the Heston model with 

different parameters. Following Yang (2013), 

with the data of Google Inc., the parameters for 

the Heston model are chosen as in Table 2. 

Table 7 below gives the results at the spot price 

783.05S   and the variance 0.069545829v  . 

We compare the data at different values of expire 

time T  and strike price K . The relative error 

here is computed by  

Explicit Heston price -  Google Inc. Price.
Error = .

Google Inc. Price
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Figure 5. The Heston solution and the explicit solution of the Heston model with parameters as in Table 1. 

 

Figure 6. The cut at 1v  of the surfaces in Figure 5. 

 Table 3. The L

 
 error when the scheme is unstable 

t  Error (in L

 
norm) 

1

500
 1368.33.10  

1

1000
 2794.08.10  

1

1200
 11.126266  

We denote the explicit Heston price by 

priceH  . We can see that the scheme can be 

applied efficiently to the Heston model with 

different kinds of parameters.  
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Table 4. The L

 
error and the relative error when the scheme is stable, with         5, 0.05, ( , ) 0,200 0,1S v S v

 

t  Error (in L

 
norm) Relative Error 

1

1500
 11.125463  10.4659%

 

1

3000
 11.123856  10.4644%

 

1

4500
 11.123208

 
10.4638%

 

1

6000  
11.123053

 
10.4636%

 

1

20000  
11.122491

 
10.4631%

 

Table 5. The L

 
error and the relative error when the scheme is stable, with         5, 0.05, ( , ) 0,300 0,1.2S v S v  

 

t  Error (in L

 
norm) Relative Error 

1

7000
 5.95748313  5.6043%

 

1

10000
 5.95753419  5.6044%

 

1

20000
 5.95753075

 
5.6043%

 

Table 6. The L

 
error and the relative error when the modification scheme is stable, with         5, 0.05, ( , ) 0,225 0,1.2S v S v  

 

t  Error (in L

 
norm) Relative Error 

1

2000
 4.325400  4.6090%

 

1

3000
 4.325450  4.6090%

 

1

5000
 4.325489

 
4.6091%

 

Table 7. A comparison between the explicit solution of the Heston model with the parameters as in Table 2 and the data of Google 

Inc. at the spot price  783.05S   and the variance 0.069545829v   

Expire time T  Strike price K  
Google Inc. 

price 
H - price Error (%)  

0.112328767  510  272.90  272.5087508  0.1539  

0.112328767  590  193.25  192.5350415  0.3699  

0.457534247  395  388.30  387.5296684  0.1983  

0.457534247  410  373.40  372.5333392  0.2320  

0.783561644  395  389.70  387.5881280  0.5419  

0.783561644  410  375.00  372.6184232  0.6350  
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Conclusions 

In our work, the explicit finite difference 

scheme with some simple modifications on the 

boundaries have been applied to the Heston 

pricing model with European options. Our results 

show that the explicit scheme with the 

modifications is simple, easy to apply, and gives 

a better approximation to the Heston solution in 

comparison with the classical method. However, 

the scheme still has the disadvantage of stability 

conditions. To overcome this disadvantage, some 

authors developed the alternative direction 

implicit (ADI) scheme, which is a kind of mixed 

explicit-implicit scheme. The ADI scheme is 

unconditionally stable. Nevertheless, it is more 

complicated in comparison with the explicit 

method. Furthermore, the ADI scheme must be 

used with care since a high dimensional matrix 

appears in a linear system of equations and an 

efficient solver is needed. In future work, we 

expect to apply this method in an efficient way to 

the Heston model with more complicated options 

types such as the American option and Barrier 

option. Besides, the parameter estimation and the 

application of this scheme in the Vietnamese 

derivative market is also a problem of interest. 
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